data.h5py.H5CParser¶
Class · Context · Source
dset = mdnc.data.h5py.H5CParser(
file_name, keywords_sequence, keywords_single, batch_size=32,
sequence_size=5, sequence_position=-1, sequence_padding='same',
shuffle=True, shuffle_seed=1000, preprocfunc=None,
num_workers=4, num_buffer=10
)
This class allows users to feed one .h5
file, and parse it by mdnc.data.sequence.MPSequence
. The realization could be described as:
This parser is the upgraded version of mdnc.data.h5py.H5GParser
, it is specially designed for parsing data to LSTM/ConvLSTM. A sequence
dimension would be inserted between batches
and channels
. In each batch, the sequence is continuously extracted in the order of the batches. During each epoch, a sliding window would iterate the first axis (samples). The number of batches would be the same as using mdnc.data.h5py.H5GParser
. For each variable specified by keywords_sequence
, each sample in the mini-batch is a sequence.
This parser could also read the dataset converted by mdnc.data.h5py.H5SeqConverter
. The workflow is shown in the following figure:
Arguments¶
Requries
Argument | Type | Description |
---|---|---|
file_name | str | The path of the .h5 file (could be without postfix). |
keywords_sequence | (str, ) | The keyword of sequence data. The keywords in this list would be parsed as (B, S, C1, C2, ...) , where B and S are the sample number and sequence length (given by the argument sequence_size ) respectively. It should be a list of keywords (or a single keyword). |
keyword_single | (str, ) | The keyword of single values. The keywords in this list would be parsed as (B, C1, C2, ...) , where B is the sample number. It should be a list of keywords (or a single keyword). |
batch_size | int | Number of samples in each mini-batch. |
sequence_size | int | The size of each sequence. It represents S of (B, S, C1, C2, ...) . |
sequence_position | int | The aligned position between the single values and the sequence values. It should be in the range of >= 0 and < sequence_size . |
sequence_padding | int | The padding method for each epoch, it will influence the first or the final samples in the dataset. Could be 'same' , 'zero' or 'none' . If set None , the number of batches of each epoch would be a little bit smaller than the actual number. |
shuffle | bool | If enabled, shuffle the data set at the beginning of each epoch. |
shuffle_seed | int | The seed for random shuffling. |
preprocfunc | object | This function would be added to the produced data so that it could serve as a pre-processing tool. Note that this tool would process the batches produced by the parser. The details about this argument would be shown in the following tips. |
num_workers | int | The number of parallel workers. |
num_buffer | int | The buffer size of the data pool, it means the maximal number of mini-batches stored in the memory. |
Tip
At least one keyword requires to be given in keywords_sequence
or keyword_single
. In some cases, we need to use both kinds of keywords. For example, the input could be a sequence, and the label may be a scalar.
Tip
The minimal requirement for the argument preprocfunc
is to be a function, or implemented with the __call__()
method. This function accepts all input mini-batch variables formatted as np.ndarray
, and returns the pre-processed results. The returned varaible number could be different from the input variable number. In some cases, you could use the provided pre-processors in the mdnc.data.preprocs
module. The processors in these module support our Broadcasting Pre- and Post- Processor Protocol. For example:
Example
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 |
|
Warning
The argument preprocfunc
requires to be a picklable object. Therefore, a lambda function or a function implemented inside if __name__ == '__main__'
is not allowed in this case.
Methods¶
check_dsets
¶
sze = dset.check_dsets(file_path, keywords)
Check the size of h5py.Dataset
and validate all datasets. A valid group of datasets requires each h5py.Dataset
shares the same length (sample number). If success, would return the size of the datasets. This method is invoked during the initialization, and do not requires users to call explicitly.
Requries
Argument | Type | Description |
---|---|---|
file_path | str | The path of the HDF5 dataset to be validated. |
keywords | (str, ) | The keywords to be validated. Each keyword should point to or redict to an h5py.Dataset . |
Returns
Argument | Description |
---|---|
sze | A int , the size of all datasets. |
get_attrs
¶
attrs = dset.get_attrs(keyword, *args, attr_names=None)
Get the attributes by the keyword.
Requries
Argument | Type | Description |
---|---|---|
keyword | str | The keyword of the to a h5py.Dataset in the to-be-loaded file. |
attr_names | (str, ) | A sequence of required attribute names. |
*args | other attribute names, would be attached to the argument attr_names by list.extend() . |
Returns
Argument | Description |
---|---|
attrs | A list of the required attribute values. |
get_file
¶
f = dset.get_file(enable_write=False)
Get a file object of the to-be-loaded file.
Requries
Argument | Type | Description |
---|---|---|
enable_write | bool | If enabled, would use the a mode to open the file. Otherwise, use the r mode. |
Returns
Argument | Description |
---|---|
f | The h5py.File object of the to-be-loaded file. |
start
¶
dset.start(compat=None)
Start the process pool. This method is implemented by mdnc.data.sequence.MPSequence
. It supports context management.
Running start()
or start_test()
would interrupt the started sequence.
Requries
Argument | Type | Description |
---|---|---|
compat | bool | Whether to fall back to multi-threading for the sequence out-type converter. If set None, the decision would be made by checking os.name . The compatible mode requires to be enabled on Windows. |
Tip
This method supports context management. Using the context is recommended. Here we show two examples:
1 2 3 4 |
|
1 2 3 |
|
Danger
The cuda.Tensor
could not be put into the queue on Windows (but on Linux we could), see
https://pytorch.org/docs/stable/notes/windows.html#cuda-ipc-operations
To solve this problem, we need to fall back to multi-threading for the sequence out-type converter on Windows.
Warning
Even if you set shuffle=False
, due to the mechanism of the parallelization, the sample order during the iteration may still get a little bit shuffled. To ensure your sample order not changed, please use shuffle=False
during the initialization and use start_test()
instead.
start_test
¶
dset.start_test(test_mode='default')
Start the test mode. In the test mode, the process pool would not be open. All operations would be finished in the main thread. However, the random indices are still generated with the same seed of the parallel dset.start()
mode.
Running start()
or start_test()
would interrupt the started sequence.
Requries
Argument | Type | Description |
---|---|---|
test_mode | str | Could be 'default' , 'cpu' , or 'numpy' .
|
Tip
This method also supports context management. See start()
to check how to use it.
finish
¶
dset.finish()
Finish the process pool. The compatible mode would be auto detected by the previous start()
.
Properties¶
len()
, batch_num
¶
len(dset)
dset.batch_num
The length of the dataset. It is the number of mini-batches, also the number of iterations for each epoch.
iter()
¶
for x1, x2, ... in dset:
...
The iterator. Recommend to use it inside the context. The unpacked variables x1, x2 ...
are ordered according to the given argument keywords
during the initialization.
size
¶
dset.size
The size of the dataset. It contains the total number of samples for each epoch.
batch_size
¶
dset.batch_size
The size of each batch. This value is given by the argument batch_size
during the initialization. The last size of the batch may be smaller than this value.
sequence_size
¶
dset.sequence_size
The length of each sequence. This value is given by the argument sequence_size
during the initialization.
sequence_position
¶
dset.sequence_position
The alignment between keywords_sequence
and keyword_single
. This value is given by the argument sequence_position
during the initialization.
sequence_padding
¶
dset.sequence_position
The padding method of each sequence. This value is given by the argument sequence_padding
during the initialization.
preproc
¶
dset.preproc
The argument preprocfunc
during the initialziation. This property helps users to invoke the preprocessor manually.
Examples¶
Example 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
data.webtools: All required datasets are available.
data.h5py: 0 tensor([[0., 1., 2., 3., 4.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([1.], device='cuda:0')
data.h5py: 1 tensor([[1., 2., 3., 4., 5.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([2.], device='cuda:0')
data.h5py: 2 tensor([[2., 3., 4., 5., 6.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([3.], device='cuda:0')
data.h5py: 3 tensor([[3., 4., 5., 6., 7.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([4.], device='cuda:0')
data.h5py: 4 tensor([[4., 5., 6., 7., 8.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([5.], device='cuda:0')
data.h5py: 5 tensor([[5., 6., 7., 8., 9.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([6.], device='cuda:0')
data.h5py: 6 tensor([[ 6., 7., 8., 9., 10.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([7.], device='cuda:0')
data.h5py: 7 tensor([[ 7., 8., 9., 10., 11.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([8.], device='cuda:0')
data.h5py: 8 tensor([[ 8., 9., 10., 11., 12.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([9.], device='cuda:0')
data.h5py: 9 tensor([[ 9., 10., 11., 12., 13.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([10.], device='cuda:0')
data.h5py: 10 tensor([[10., 11., 12., 13., 14.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([11.], device='cuda:0')
data.h5py: 11 tensor([[11., 12., 13., 14., 15.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([12.], device='cuda:0')
data.h5py: 12 tensor([[12., 13., 14., 15., 16.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([13.], device='cuda:0')
data.h5py: 13 tensor([[13., 14., 15., 16., 17.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([14.], device='cuda:0')
data.h5py: 14 tensor([[14., 15., 16., 17., 18.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([15.], device='cuda:0')
data.h5py: 15 tensor([[15., 16., 17., 18., 19.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([16.], device='cuda:0')
data.h5py: 16 tensor([[16., 17., 18., 19., 20.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([17.], device='cuda:0')
data.h5py: 17 tensor([[17., 18., 19., 20., 21.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([18.], device='cuda:0')
data.h5py: 18 tensor([[18., 19., 20., 21., 22.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([19.], device='cuda:0')
data.h5py: 19 tensor([[19., 20., 21., 22., 23.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([20.], device='cuda:0')
data.h5py: 20 tensor([[20., 21., 22., 23., 24.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([21.], device='cuda:0')
data.h5py: 21 tensor([[21., 22., 23., 24., 25.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([22.], device='cuda:0')
data.h5py: 22 tensor([[22., 23., 24., 25., 26.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([23.], device='cuda:0')
data.h5py: 23 tensor([[23., 24., 25., 26., 27.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([24.], device='cuda:0')
data.h5py: 24 tensor([[24., 25., 26., 27., 28.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([25.], device='cuda:0')
data.h5py: 25 tensor([[25., 26., 27., 28., 29.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([26.], device='cuda:0')
data.h5py: 26 tensor([[26., 27., 28., 29., 30.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([27.], device='cuda:0')
data.h5py: 27 tensor([[27., 28., 29., 30., 31.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([28.], device='cuda:0')
data.h5py: 28 tensor([[28., 29., 30., 31., 32.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([29.], device='cuda:0')
data.h5py: 29 tensor([[29., 30., 31., 32., 33.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([30.], device='cuda:0')
data.h5py: 30 tensor([[30., 31., 32., 33., 34.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([31.], device='cuda:0')
data.h5py: 31 tensor([[31., 32., 33., 34., 35.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([32.], device='cuda:0')
data.h5py: 32 tensor([[32., 33., 34., 35., 36.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([33.], device='cuda:0')
data.h5py: 33 tensor([[33., 34., 35., 36., 37.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([34.], device='cuda:0')
data.h5py: 34 tensor([[34., 35., 36., 37., 38.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([35.], device='cuda:0')
data.h5py: 35 tensor([[35., 36., 37., 38., 39.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([36.], device='cuda:0')
data.h5py: 36 tensor([[36., 37., 38., 39., 40.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([37.], device='cuda:0')
data.h5py: 37 tensor([[37., 38., 39., 40., 41.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([38.], device='cuda:0')
data.h5py: 38 tensor([[38., 39., 40., 41., 42.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([39.], device='cuda:0')
data.h5py: 39 tensor([[39., 40., 41., 42., 43.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([40.], device='cuda:0')
data.h5py: 40 tensor([[40., 41., 42., 43., 44.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([41.], device='cuda:0')
data.h5py: 41 tensor([[41., 42., 43., 44., 45.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([42.], device='cuda:0')
data.h5py: 42 tensor([[42., 43., 44., 45., 46.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([43.], device='cuda:0')
data.h5py: 43 tensor([[43., 44., 45., 46., 47.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([44.], device='cuda:0')
data.h5py: 44 tensor([[44., 45., 46., 47., 48.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([45.], device='cuda:0')
data.h5py: 45 tensor([[45., 46., 47., 48., 49.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([46.], device='cuda:0')
data.h5py: 46 tensor([[46., 47., 48., 49., 50.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([47.], device='cuda:0')
data.h5py: 47 tensor([[47., 48., 49., 50., 51.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([48.], device='cuda:0')
data.h5py: 48 tensor([[48., 49., 50., 51., 52.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([49.], device='cuda:0')
data.h5py: 49 tensor([[49., 50., 51., 52., 53.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([50.], device='cuda:0')
data.h5py: 50 tensor([[50., 51., 52., 53., 54.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([51.], device='cuda:0')
data.h5py: 51 tensor([[51., 52., 53., 54., 55.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([52.], device='cuda:0')
data.h5py: 52 tensor([[52., 53., 54., 55., 56.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([53.], device='cuda:0')
data.h5py: 53 tensor([[53., 54., 55., 56., 57.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([54.], device='cuda:0')
data.h5py: 54 tensor([[54., 55., 56., 57., 58.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([55.], device='cuda:0')
data.h5py: 55 tensor([[55., 56., 57., 58., 59.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([56.], device='cuda:0')
data.h5py: 56 tensor([[56., 57., 58., 59., 60.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([57.], device='cuda:0')
data.h5py: 57 tensor([[57., 58., 59., 60., 61.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([58.], device='cuda:0')
data.h5py: 58 tensor([[58., 59., 60., 61., 62.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([59.], device='cuda:0')
data.h5py: 59 tensor([[59., 60., 61., 62., 63.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([60.], device='cuda:0')
data.h5py: 60 tensor([[60., 61., 62., 63., 64.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([61.], device='cuda:0')
data.h5py: 61 tensor([[61., 62., 63., 64., 65.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([62.], device='cuda:0')
data.h5py: 62 tensor([[62., 63., 64., 65., 66.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([63.], device='cuda:0')
data.h5py: 63 tensor([[63., 64., 65., 66., 67.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([64.], device='cuda:0')
data.h5py: 64 tensor([[64., 65., 66., 67., 68.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([65.], device='cuda:0')
data.h5py: 65 tensor([[65., 66., 67., 68., 69.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([66.], device='cuda:0')
data.h5py: 66 tensor([[66., 67., 68., 69., 70.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([67.], device='cuda:0')
data.h5py: 67 tensor([[67., 68., 69., 70., 71.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([68.], device='cuda:0')
data.h5py: 68 tensor([[68., 69., 70., 71., 72.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([69.], device='cuda:0')
data.h5py: 69 tensor([[69., 70., 71., 72., 73.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([70.], device='cuda:0')
data.h5py: 70 tensor([[70., 71., 72., 73., 74.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([71.], device='cuda:0')
data.h5py: 71 tensor([[71., 72., 73., 74., 75.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([72.], device='cuda:0')
data.h5py: 72 tensor([[72., 73., 74., 75., 76.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([73.], device='cuda:0')
data.h5py: 73 tensor([[73., 74., 75., 76., 77.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([74.], device='cuda:0')
data.h5py: 74 tensor([[74., 75., 76., 77., 78.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([75.], device='cuda:0')
data.h5py: 75 tensor([[75., 76., 77., 78., 79.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([76.], device='cuda:0')
data.h5py: 76 tensor([[76., 77., 78., 79., 80.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([77.], device='cuda:0')
data.h5py: 77 tensor([[77., 78., 79., 80., 81.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([78.], device='cuda:0')
data.h5py: 78 tensor([[78., 79., 80., 81., 82.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([79.], device='cuda:0')
data.h5py: 79 tensor([[79., 80., 81., 82., 83.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([80.], device='cuda:0')
data.h5py: 80 tensor([[80., 81., 82., 83., 84.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([81.], device='cuda:0')
data.h5py: 81 tensor([[81., 82., 83., 84., 85.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([82.], device='cuda:0')
data.h5py: 82 tensor([[82., 83., 84., 85., 86.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([83.], device='cuda:0')
data.h5py: 83 tensor([[83., 84., 85., 86., 87.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([84.], device='cuda:0')
data.h5py: 84 tensor([[84., 85., 86., 87., 88.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([85.], device='cuda:0')
data.h5py: 85 tensor([[85., 86., 87., 88., 89.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([86.], device='cuda:0')
data.h5py: 86 tensor([[86., 87., 88., 89., 90.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([87.], device='cuda:0')
data.h5py: 87 tensor([[87., 88., 89., 90., 91.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([88.], device='cuda:0')
data.h5py: 88 tensor([[88., 89., 90., 91., 92.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([89.], device='cuda:0')
data.h5py: 89 tensor([[89., 90., 91., 92., 93.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([90.], device='cuda:0')
data.h5py: 90 tensor([[90., 91., 92., 93., 94.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([91.], device='cuda:0')
data.h5py: 91 tensor([[91., 92., 93., 94., 95.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([92.], device='cuda:0')
data.h5py: 92 tensor([[92., 93., 94., 95., 96.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([93.], device='cuda:0')
data.h5py: 93 tensor([[93., 94., 95., 96., 97.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([94.], device='cuda:0')
data.h5py: 94 tensor([[94., 95., 96., 97., 98.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([95.], device='cuda:0')
data.h5py: 95 tensor([[95., 96., 97., 98., 99.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([96.], device='cuda:0')
data.h5py: 96 tensor([[ 96., 97., 98., 99., 100.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([97.], device='cuda:0')
data.h5py: 97 tensor([[ 97., 98., 99., 100., 101.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([98.], device='cuda:0')
data.h5py: 98 tensor([[ 98., 99., 100., 101., 102.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([99.], device='cuda:0')
data.h5py: 99 tensor([[ 99., 100., 101., 102., 103.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([100.], device='cuda:0')
data.h5py: 100 tensor([[100., 101., 102., 103., 104.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([101.], device='cuda:0')
data.h5py: 101 tensor([[101., 102., 103., 104., 105.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([102.], device='cuda:0')
data.h5py: 102 tensor([[102., 103., 104., 105., 106.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([103.], device='cuda:0')
data.h5py: 103 tensor([[103., 104., 105., 106., 107.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([104.], device='cuda:0')
data.h5py: 104 tensor([[104., 105., 106., 107., 108.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([105.], device='cuda:0')
data.h5py: 105 tensor([[105., 106., 107., 108., 109.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([106.], device='cuda:0')
data.h5py: 106 tensor([[106., 107., 108., 109., 110.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([107.], device='cuda:0')
data.h5py: 107 tensor([[107., 108., 109., 110., 111.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([108.], device='cuda:0')
data.h5py: 108 tensor([[108., 109., 110., 111., 112.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([109.], device='cuda:0')
data.h5py: 109 tensor([[109., 110., 111., 112., 113.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([110.], device='cuda:0')
data.h5py: 110 tensor([[110., 111., 112., 113., 114.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([111.], device='cuda:0')
data.h5py: 111 tensor([[111., 112., 113., 114., 115.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([112.], device='cuda:0')
data.h5py: 112 tensor([[112., 113., 114., 115., 116.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([113.], device='cuda:0')
data.h5py: 113 tensor([[113., 114., 115., 116., 117.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([114.], device='cuda:0')
data.h5py: 114 tensor([[114., 115., 116., 117., 118.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([115.], device='cuda:0')
data.h5py: 115 tensor([[115., 116., 117., 118., 119.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([116.], device='cuda:0')
data.h5py: 116 tensor([[116., 117., 118., 119., 120.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([117.], device='cuda:0')
data.h5py: 117 tensor([[117., 118., 119., 120., 121.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([118.], device='cuda:0')
data.h5py: 118 tensor([[118., 119., 120., 121., 122.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([119.], device='cuda:0')
data.h5py: 119 tensor([[119., 120., 121., 122., 123.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([120.], device='cuda:0')
data.h5py: 120 tensor([[120., 121., 122., 123., 124.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([121.], device='cuda:0')
data.h5py: 121 tensor([[121., 122., 123., 124., 125.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([122.], device='cuda:0')
data.h5py: 122 tensor([[122., 123., 124., 125., 126.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([123.], device='cuda:0')
data.h5py: 123 tensor([[123., 124., 125., 126., 127.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([124.], device='cuda:0')
data.h5py: 124 tensor([[124., 125., 126., 127., 128.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([125.], device='cuda:0')
data.h5py: 125 tensor([[125., 126., 127., 128., 129.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([126.], device='cuda:0')
data.h5py: 126 tensor([[126., 127., 128., 129., 130.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([127.], device='cuda:0')
data.h5py: 127 tensor([[127., 128., 129., 130., 131.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([128.], device='cuda:0')
data.h5py: 128 tensor([[128., 129., 130., 131., 132.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([129.], device='cuda:0')
data.h5py: 129 tensor([[129., 130., 131., 132., 133.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([130.], device='cuda:0')
data.h5py: 130 tensor([[130., 131., 132., 133., 134.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([131.], device='cuda:0')
data.h5py: 131 tensor([[131., 132., 133., 134., 135.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([132.], device='cuda:0')
data.h5py: 132 tensor([[132., 133., 134., 135., 136.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([133.], device='cuda:0')
data.h5py: 133 tensor([[133., 134., 135., 136., 137.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([134.], device='cuda:0')
data.h5py: 134 tensor([[134., 135., 136., 137., 138.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([135.], device='cuda:0')
data.h5py: 135 tensor([[135., 136., 137., 138., 139.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([136.], device='cuda:0')
data.h5py: 136 tensor([[136., 137., 138., 139., 140.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([137.], device='cuda:0')
data.h5py: 137 tensor([[137., 138., 139., 140., 141.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([138.], device='cuda:0')
data.h5py: 138 tensor([[138., 139., 140., 141., 142.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([139.], device='cuda:0')
data.h5py: 139 tensor([[139., 140., 141., 142., 143.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([140.], device='cuda:0')
data.h5py: 140 tensor([[140., 141., 142., 143., 144.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([141.], device='cuda:0')
data.h5py: 141 tensor([[141., 142., 143., 144., 145.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([142.], device='cuda:0')
data.h5py: 142 tensor([[142., 143., 144., 145., 146.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([143.], device='cuda:0')
data.h5py: 143 tensor([[143., 144., 145., 146., 147.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([144.], device='cuda:0')
data.h5py: 144 tensor([[144., 145., 146., 147., 148.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([145.], device='cuda:0')
data.h5py: 145 tensor([[145., 146., 147., 148., 149.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([146.], device='cuda:0')
data.h5py: 146 tensor([[146., 147., 148., 149., 150.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([147.], device='cuda:0')
data.h5py: 147 tensor([[147., 148., 149., 150., 151.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([148.], device='cuda:0')
data.h5py: 148 tensor([[148., 149., 150., 151., 152.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([149.], device='cuda:0')
data.h5py: 149 tensor([[149., 150., 151., 152., 153.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([150.], device='cuda:0')
data.h5py: 150 tensor([[150., 151., 152., 153., 154.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([151.], device='cuda:0')
data.h5py: 151 tensor([[151., 152., 153., 154., 155.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([152.], device='cuda:0')
data.h5py: 152 tensor([[152., 153., 154., 155., 156.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([153.], device='cuda:0')
data.h5py: 153 tensor([[153., 154., 155., 156., 157.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([154.], device='cuda:0')
data.h5py: 154 tensor([[154., 155., 156., 157., 158.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([155.], device='cuda:0')
data.h5py: 155 tensor([[155., 156., 157., 158., 159.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([156.], device='cuda:0')
data.h5py: 156 tensor([[156., 157., 158., 159., 160.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([157.], device='cuda:0')
data.h5py: 157 tensor([[157., 158., 159., 160., 161.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([158.], device='cuda:0')
data.h5py: 158 tensor([[158., 159., 160., 161., 162.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([159.], device='cuda:0')
data.h5py: 159 tensor([[159., 160., 161., 162., 163.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([160.], device='cuda:0')
data.h5py: 160 tensor([[160., 161., 162., 163., 164.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([161.], device='cuda:0')
data.h5py: 161 tensor([[161., 162., 163., 164., 165.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([162.], device='cuda:0')
data.h5py: 162 tensor([[162., 163., 164., 165., 166.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([163.], device='cuda:0')
data.h5py: 163 tensor([[163., 164., 165., 166., 167.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([164.], device='cuda:0')
data.h5py: 164 tensor([[164., 165., 166., 167., 168.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([165.], device='cuda:0')
data.h5py: 165 tensor([[165., 166., 167., 168., 169.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([166.], device='cuda:0')
data.h5py: 166 tensor([[166., 167., 168., 169., 170.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([167.], device='cuda:0')
data.h5py: 167 tensor([[167., 168., 169., 170., 171.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([168.], device='cuda:0')
data.h5py: 168 tensor([[168., 169., 170., 171., 172.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([169.], device='cuda:0')
data.h5py: 169 tensor([[169., 170., 171., 172., 173.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([170.], device='cuda:0')
data.h5py: 170 tensor([[170., 171., 172., 173., 174.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([171.], device='cuda:0')
data.h5py: 171 tensor([[171., 172., 173., 174., 175.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([172.], device='cuda:0')
data.h5py: 172 tensor([[172., 173., 174., 175., 176.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([173.], device='cuda:0')
data.h5py: 173 tensor([[173., 174., 175., 176., 177.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([174.], device='cuda:0')
data.h5py: 174 tensor([[174., 175., 176., 177., 178.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([175.], device='cuda:0')
data.h5py: 175 tensor([[175., 176., 177., 178., 179.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([176.], device='cuda:0')
data.h5py: 176 tensor([[176., 177., 178., 179., 180.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([177.], device='cuda:0')
data.h5py: 177 tensor([[177., 178., 179., 180., 181.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([178.], device='cuda:0')
data.h5py: 178 tensor([[178., 179., 180., 181., 182.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([179.], device='cuda:0')
data.h5py: 179 tensor([[179., 180., 181., 182., 183.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([180.], device='cuda:0')
data.h5py: 180 tensor([[180., 181., 182., 183., 184.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([181.], device='cuda:0')
data.h5py: 181 tensor([[181., 182., 183., 184., 185.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([182.], device='cuda:0')
data.h5py: 182 tensor([[182., 183., 184., 185., 186.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([183.], device='cuda:0')
data.h5py: 183 tensor([[183., 184., 185., 186., 187.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([184.], device='cuda:0')
data.h5py: 184 tensor([[184., 185., 186., 187., 188.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([185.], device='cuda:0')
data.h5py: 185 tensor([[185., 186., 187., 188., 189.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([186.], device='cuda:0')
data.h5py: 186 tensor([[186., 187., 188., 189., 190.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([187.], device='cuda:0')
data.h5py: 187 tensor([[187., 188., 189., 190., 191.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([188.], device='cuda:0')
data.h5py: 188 tensor([[188., 189., 190., 191., 192.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([189.], device='cuda:0')
data.h5py: 189 tensor([[189., 190., 191., 192., 193.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([190.], device='cuda:0')
data.h5py: 190 tensor([[190., 191., 192., 193., 194.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([191.], device='cuda:0')
data.h5py: 191 tensor([[191., 192., 193., 194., 195.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([192.], device='cuda:0')
data.h5py: 192 tensor([[192., 193., 194., 195., 196.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([193.], device='cuda:0')
data.h5py: 193 tensor([[193., 194., 195., 196., 197.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([194.], device='cuda:0')
data.h5py: 194 tensor([[194., 195., 196., 197., 198.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([195.], device='cuda:0')
data.h5py: 195 tensor([[195., 196., 197., 198., 199.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([196.], device='cuda:0')
data.h5py: 196 tensor([[196., 197., 198., 199., 200.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([197.], device='cuda:0')
data.h5py: 197 tensor([[197., 198., 199., 200., 201.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([198.], device='cuda:0')
data.h5py: 198 tensor([[198., 199., 200., 201., 202.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([199.], device='cuda:0')
data.h5py: 199 tensor([[199., 200., 201., 202., 203.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([200.], device='cuda:0')
data.h5py: 200 tensor([[200., 201., 202., 203., 204.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([201.], device='cuda:0')
data.h5py: 201 tensor([[201., 202., 203., 204., 205.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([202.], device='cuda:0')
data.h5py: 202 tensor([[202., 203., 204., 205., 206.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([203.], device='cuda:0')
data.h5py: 203 tensor([[203., 204., 205., 206., 207.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([204.], device='cuda:0')
data.h5py: 204 tensor([[204., 205., 206., 207., 208.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([205.], device='cuda:0')
data.h5py: 205 tensor([[205., 206., 207., 208., 209.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([206.], device='cuda:0')
data.h5py: 206 tensor([[206., 207., 208., 209., 210.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([207.], device='cuda:0')
data.h5py: 207 tensor([[207., 208., 209., 210., 211.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([208.], device='cuda:0')
data.h5py: 208 tensor([[208., 209., 210., 211., 212.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([209.], device='cuda:0')
data.h5py: 209 tensor([[209., 210., 211., 212., 213.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([210.], device='cuda:0')
data.h5py: 210 tensor([[210., 211., 212., 213., 214.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([211.], device='cuda:0')
data.h5py: 211 tensor([[211., 212., 213., 214., 215.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([212.], device='cuda:0')
data.h5py: 212 tensor([[212., 213., 214., 215., 216.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([213.], device='cuda:0')
data.h5py: 213 tensor([[213., 214., 215., 216., 217.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([214.], device='cuda:0')
data.h5py: 214 tensor([[214., 215., 216., 217., 218.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([215.], device='cuda:0')
data.h5py: 215 tensor([[215., 216., 217., 218., 219.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([216.], device='cuda:0')
data.h5py: 216 tensor([[216., 217., 218., 219., 220.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([217.], device='cuda:0')
data.h5py: 217 tensor([[217., 218., 219., 220., 221.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([218.], device='cuda:0')
data.h5py: 218 tensor([[218., 219., 220., 221., 222.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([219.], device='cuda:0')
data.h5py: 219 tensor([[219., 220., 221., 222., 223.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([220.], device='cuda:0')
data.h5py: 220 tensor([[220., 221., 222., 223., 224.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([221.], device='cuda:0')
data.h5py: 221 tensor([[221., 222., 223., 224., 225.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([222.], device='cuda:0')
data.h5py: 222 tensor([[222., 223., 224., 225., 226.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([223.], device='cuda:0')
data.h5py: 223 tensor([[223., 224., 225., 226., 227.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([224.], device='cuda:0')
data.h5py: 224 tensor([[224., 225., 226., 227., 228.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([225.], device='cuda:0')
data.h5py: 225 tensor([[225., 226., 227., 228., 229.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([226.], device='cuda:0')
data.h5py: 226 tensor([[226., 227., 228., 229., 230.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([227.], device='cuda:0')
data.h5py: 227 tensor([[227., 228., 229., 230., 231.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([228.], device='cuda:0')
data.h5py: 228 tensor([[228., 229., 230., 231., 232.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([229.], device='cuda:0')
data.h5py: 229 tensor([[229., 230., 231., 232., 233.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([230.], device='cuda:0')
data.h5py: 230 tensor([[230., 231., 232., 233., 234.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([231.], device='cuda:0')
data.h5py: 231 tensor([[231., 232., 233., 234., 235.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([232.], device='cuda:0')
data.h5py: 232 tensor([[232., 233., 234., 235., 236.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([233.], device='cuda:0')
data.h5py: 233 tensor([[233., 234., 235., 236., 237.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([234.], device='cuda:0')
data.h5py: 234 tensor([[234., 235., 236., 237., 238.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([235.], device='cuda:0')
data.h5py: 235 tensor([[235., 236., 237., 238., 239.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([236.], device='cuda:0')
data.h5py: 236 tensor([[236., 237., 238., 239., 240.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([237.], device='cuda:0')
data.h5py: 237 tensor([[237., 238., 239., 240., 241.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([238.], device='cuda:0')
data.h5py: 238 tensor([[238., 239., 240., 241., 242.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([239.], device='cuda:0')
data.h5py: 239 tensor([[239., 240., 241., 242., 243.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([240.], device='cuda:0')
data.h5py: 240 tensor([[240., 241., 242., 243., 244.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([241.], device='cuda:0')
data.h5py: 241 tensor([[241., 242., 243., 244., 245.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([242.], device='cuda:0')
data.h5py: 242 tensor([[242., 243., 244., 245., 246.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([243.], device='cuda:0')
data.h5py: 243 tensor([[243., 244., 245., 246., 247.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([244.], device='cuda:0')
data.h5py: 244 tensor([[244., 245., 246., 247., 248.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([245.], device='cuda:0')
data.h5py: 245 tensor([[245., 246., 247., 248., 249.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([246.], device='cuda:0')
data.h5py: 246 tensor([[246., 247., 248., 249., 250.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([247.], device='cuda:0')
data.h5py: 247 tensor([[247., 248., 249., 250., 251.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([248.], device='cuda:0')
data.h5py: 248 tensor([[248., 249., 250., 251., 252.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([249.], device='cuda:0')
data.h5py: 249 tensor([[249., 250., 251., 252., 253.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([250.], device='cuda:0')
data.h5py: 250 tensor([[250., 251., 252., 253., 254.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([251.], device='cuda:0')
data.h5py: 251 tensor([[251., 252., 253., 254., 255.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([252.], device='cuda:0')
data.h5py: 252 tensor([[252., 253., 254., 255., 256.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([253.], device='cuda:0')
data.h5py: 253 tensor([[253., 254., 255., 256., 257.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([254.], device='cuda:0')
data.h5py: 254 tensor([[254., 255., 256., 257., 258.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([255.], device='cuda:0')
data.h5py: 255 tensor([[255., 256., 257., 258., 259.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([256.], device='cuda:0')
data.h5py: 256 tensor([[256., 257., 258., 259., 260.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([257.], device='cuda:0')
data.h5py: 257 tensor([[257., 258., 259., 260., 261.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([258.], device='cuda:0')
data.h5py: 258 tensor([[258., 259., 260., 261., 262.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([259.], device='cuda:0')
data.h5py: 259 tensor([[259., 260., 261., 262., 263.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([260.], device='cuda:0')
data.h5py: 260 tensor([[260., 261., 262., 263., 264.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([261.], device='cuda:0')
data.h5py: 261 tensor([[261., 262., 263., 264., 265.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([262.], device='cuda:0')
data.h5py: 262 tensor([[262., 263., 264., 265., 266.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([263.], device='cuda:0')
data.h5py: 263 tensor([[263., 264., 265., 266., 267.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([264.], device='cuda:0')
data.h5py: 264 tensor([[264., 265., 266., 267., 268.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([265.], device='cuda:0')
data.h5py: 265 tensor([[265., 266., 267., 268., 269.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([266.], device='cuda:0')
data.h5py: 266 tensor([[266., 267., 268., 269., 270.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([267.], device='cuda:0')
data.h5py: 267 tensor([[267., 268., 269., 270., 271.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([268.], device='cuda:0')
data.h5py: 268 tensor([[268., 269., 270., 271., 272.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([269.], device='cuda:0')
data.h5py: 269 tensor([[269., 270., 271., 272., 273.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([270.], device='cuda:0')
data.h5py: 270 tensor([[270., 271., 272., 273., 274.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([271.], device='cuda:0')
data.h5py: 271 tensor([[271., 272., 273., 274., 275.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([272.], device='cuda:0')
data.h5py: 272 tensor([[272., 273., 274., 275., 276.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([273.], device='cuda:0')
data.h5py: 273 tensor([[273., 274., 275., 276., 277.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([274.], device='cuda:0')
data.h5py: 274 tensor([[274., 275., 276., 277., 278.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([275.], device='cuda:0')
data.h5py: 275 tensor([[275., 276., 277., 278., 279.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([276.], device='cuda:0')
data.h5py: 276 tensor([[276., 277., 278., 279., 280.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([277.], device='cuda:0')
data.h5py: 277 tensor([[277., 278., 279., 280., 281.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([278.], device='cuda:0')
data.h5py: 278 tensor([[278., 279., 280., 281., 282.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([279.], device='cuda:0')
data.h5py: 279 tensor([[279., 280., 281., 282., 283.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([280.], device='cuda:0')
data.h5py: 280 tensor([[280., 281., 282., 283., 284.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([281.], device='cuda:0')
data.h5py: 281 tensor([[281., 282., 283., 284., 285.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([282.], device='cuda:0')
data.h5py: 282 tensor([[282., 283., 284., 285., 286.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([283.], device='cuda:0')
data.h5py: 283 tensor([[283., 284., 285., 286., 287.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([284.], device='cuda:0')
data.h5py: 284 tensor([[284., 285., 286., 287., 288.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([285.], device='cuda:0')
data.h5py: 285 tensor([[285., 286., 287., 288., 289.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([286.], device='cuda:0')
data.h5py: 286 tensor([[286., 287., 288., 289., 290.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([287.], device='cuda:0')
data.h5py: 287 tensor([[287., 288., 289., 290., 291.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([288.], device='cuda:0')
data.h5py: 288 tensor([[288., 289., 290., 291., 292.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([289.], device='cuda:0')
data.h5py: 289 tensor([[289., 290., 291., 292., 293.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([290.], device='cuda:0')
data.h5py: 290 tensor([[290., 291., 292., 293., 294.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([291.], device='cuda:0')
data.h5py: 291 tensor([[291., 292., 293., 294., 295.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([292.], device='cuda:0')
data.h5py: 292 tensor([[292., 293., 294., 295., 296.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([293.], device='cuda:0')
data.h5py: 293 tensor([[293., 294., 295., 296., 297.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([294.], device='cuda:0')
data.h5py: 294 tensor([[294., 295., 296., 297., 298.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([295.], device='cuda:0')
data.h5py: 295 tensor([[295., 296., 297., 298., 299.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([296.], device='cuda:0')
data.h5py: 296 tensor([[296., 297., 298., 299., 300.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([297.], device='cuda:0')
data.h5py: 297 tensor([[297., 298., 299., 300., 301.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([298.], device='cuda:0')
data.h5py: 298 tensor([[298., 299., 300., 301., 302.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([299.], device='cuda:0')
data.h5py: 299 tensor([[299., 300., 301., 302., 303.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([300.], device='cuda:0')
data.h5py: 300 tensor([[300., 301., 302., 303., 304.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([301.], device='cuda:0')
data.h5py: 301 tensor([[301., 302., 303., 304., 305.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([302.], device='cuda:0')
data.h5py: 302 tensor([[302., 303., 304., 305., 306.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([303.], device='cuda:0')
data.h5py: 303 tensor([[303., 304., 305., 306., 307.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([304.], device='cuda:0')
data.h5py: 304 tensor([[304., 305., 306., 307., 308.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([305.], device='cuda:0')
data.h5py: 305 tensor([[305., 306., 307., 308., 309.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([306.], device='cuda:0')
data.h5py: 306 tensor([[306., 307., 308., 309., 310.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([307.], device='cuda:0')
data.h5py: 307 tensor([[307., 308., 309., 310., 311.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([308.], device='cuda:0')
data.h5py: 308 tensor([[308., 309., 310., 311., 312.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([309.], device='cuda:0')
data.h5py: 309 tensor([[309., 310., 311., 312., 313.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([310.], device='cuda:0')
data.h5py: 310 tensor([[310., 311., 312., 313., 314.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([311.], device='cuda:0')
data.h5py: 311 tensor([[311., 312., 313., 314., 315.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([312.], device='cuda:0')
data.h5py: 312 tensor([[312., 313., 314., 315., 316.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([313.], device='cuda:0')
data.h5py: 313 tensor([[313., 314., 315., 316., 317.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([314.], device='cuda:0')
data.h5py: 314 tensor([[314., 315., 316., 317., 318.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([315.], device='cuda:0')
data.h5py: 315 tensor([[315., 316., 317., 318., 319.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([316.], device='cuda:0')
data.h5py: 316 tensor([[316., 317., 318., 319., 320.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([317.], device='cuda:0')
data.h5py: 317 tensor([[317., 318., 319., 320., 321.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([318.], device='cuda:0')
data.h5py: 318 tensor([[318., 319., 320., 321., 322.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([319.], device='cuda:0')
data.h5py: 319 tensor([[319., 320., 321., 322., 323.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([320.], device='cuda:0')
data.h5py: 320 tensor([[320., 321., 322., 323., 324.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([321.], device='cuda:0')
data.h5py: 321 tensor([[321., 322., 323., 324., 325.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([322.], device='cuda:0')
data.h5py: 322 tensor([[322., 323., 324., 325., 326.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([323.], device='cuda:0')
data.h5py: 323 tensor([[323., 324., 325., 326., 327.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([324.], device='cuda:0')
data.h5py: 324 tensor([[324., 325., 326., 327., 328.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([325.], device='cuda:0')
data.h5py: 325 tensor([[325., 326., 327., 328., 329.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([326.], device='cuda:0')
data.h5py: 326 tensor([[326., 327., 328., 329., 330.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([327.], device='cuda:0')
data.h5py: 327 tensor([[327., 328., 329., 330., 331.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([328.], device='cuda:0')
data.h5py: 328 tensor([[328., 329., 330., 331., 332.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([329.], device='cuda:0')
data.h5py: 329 tensor([[329., 330., 331., 332., 333.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([330.], device='cuda:0')
data.h5py: 330 tensor([[330., 331., 332., 333., 334.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([331.], device='cuda:0')
data.h5py: 331 tensor([[331., 332., 333., 334., 335.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([332.], device='cuda:0')
data.h5py: 332 tensor([[332., 333., 334., 335., 336.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([333.], device='cuda:0')
data.h5py: 333 tensor([[333., 334., 335., 336., 337.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([334.], device='cuda:0')
data.h5py: 334 tensor([[334., 335., 336., 337., 338.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([335.], device='cuda:0')
data.h5py: 335 tensor([[335., 336., 337., 338., 339.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([336.], device='cuda:0')
data.h5py: 336 tensor([[336., 337., 338., 339., 340.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([337.], device='cuda:0')
data.h5py: 337 tensor([[337., 338., 339., 340., 341.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([338.], device='cuda:0')
data.h5py: 338 tensor([[338., 339., 340., 341., 342.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([339.], device='cuda:0')
data.h5py: 339 tensor([[339., 340., 341., 342., 343.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([340.], device='cuda:0')
data.h5py: 340 tensor([[340., 341., 342., 343., 344.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([341.], device='cuda:0')
data.h5py: 341 tensor([[341., 342., 343., 344., 345.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([342.], device='cuda:0')
data.h5py: 342 tensor([[342., 343., 344., 345., 346.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([343.], device='cuda:0')
data.h5py: 343 tensor([[343., 344., 345., 346., 347.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([344.], device='cuda:0')
data.h5py: 344 tensor([[344., 345., 346., 347., 348.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([345.], device='cuda:0')
data.h5py: 345 tensor([[345., 346., 347., 348., 349.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([346.], device='cuda:0')
data.h5py: 346 tensor([[346., 347., 348., 349., 350.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([347.], device='cuda:0')
data.h5py: 347 tensor([[347., 348., 349., 350., 351.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([348.], device='cuda:0')
data.h5py: 348 tensor([[348., 349., 350., 351., 352.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([349.], device='cuda:0')
data.h5py: 349 tensor([[349., 350., 351., 352., 353.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([350.], device='cuda:0')
data.h5py: 350 tensor([[350., 351., 352., 353., 354.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([351.], device='cuda:0')
data.h5py: 351 tensor([[351., 352., 353., 354., 355.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([352.], device='cuda:0')
data.h5py: 352 tensor([[352., 353., 354., 355., 356.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([353.], device='cuda:0')
data.h5py: 353 tensor([[353., 354., 355., 356., 357.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([354.], device='cuda:0')
data.h5py: 354 tensor([[354., 355., 356., 357., 358.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([355.], device='cuda:0')
data.h5py: 355 tensor([[355., 356., 357., 358., 359.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([356.], device='cuda:0')
data.h5py: 356 tensor([[356., 357., 358., 359., 360.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([357.], device='cuda:0')
data.h5py: 357 tensor([[357., 358., 359., 360., 361.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([358.], device='cuda:0')
data.h5py: 358 tensor([[358., 359., 360., 361., 362.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([359.], device='cuda:0')
data.h5py: 359 tensor([[359., 360., 361., 362., 363.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([360.], device='cuda:0')
data.h5py: 360 tensor([[360., 361., 362., 363., 364.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([361.], device='cuda:0')
data.h5py: 361 tensor([[361., 362., 363., 364., 365.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([362.], device='cuda:0')
data.h5py: 362 tensor([[362., 363., 364., 365., 366.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([363.], device='cuda:0')
data.h5py: 363 tensor([[363., 364., 365., 366., 367.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([364.], device='cuda:0')
data.h5py: 364 tensor([[364., 365., 366., 367., 368.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([365.], device='cuda:0')
data.h5py: 365 tensor([[365., 366., 367., 368., 369.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([366.], device='cuda:0')
data.h5py: 366 tensor([[366., 367., 368., 369., 370.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([367.], device='cuda:0')
data.h5py: 367 tensor([[367., 368., 369., 370., 371.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([368.], device='cuda:0')
data.h5py: 368 tensor([[368., 369., 370., 371., 372.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([369.], device='cuda:0')
data.h5py: 369 tensor([[369., 370., 371., 372., 373.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([370.], device='cuda:0')
data.h5py: 370 tensor([[370., 371., 372., 373., 374.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([371.], device='cuda:0')
data.h5py: 371 tensor([[371., 372., 373., 374., 375.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([372.], device='cuda:0')
data.h5py: 372 tensor([[372., 373., 374., 375., 376.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([373.], device='cuda:0')
data.h5py: 373 tensor([[373., 374., 375., 376., 377.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([374.], device='cuda:0')
data.h5py: 374 tensor([[374., 375., 376., 377., 378.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([375.], device='cuda:0')
data.h5py: 375 tensor([[375., 376., 377., 378., 379.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([376.], device='cuda:0')
data.h5py: 376 tensor([[376., 377., 378., 379., 380.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([377.], device='cuda:0')
data.h5py: 377 tensor([[377., 378., 379., 380., 381.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([378.], device='cuda:0')
data.h5py: 378 tensor([[378., 379., 380., 381., 382.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([379.], device='cuda:0')
data.h5py: 379 tensor([[379., 380., 381., 382., 383.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([380.], device='cuda:0')
data.h5py: 380 tensor([[380., 381., 382., 383., 384.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([381.], device='cuda:0')
data.h5py: 381 tensor([[381., 382., 383., 384., 385.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([382.], device='cuda:0')
data.h5py: 382 tensor([[382., 383., 384., 385., 386.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([383.], device='cuda:0')
data.h5py: 383 tensor([[383., 384., 385., 386., 387.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([384.], device='cuda:0')
data.h5py: 384 tensor([[384., 385., 386., 387., 388.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([385.], device='cuda:0')
data.h5py: 385 tensor([[385., 386., 387., 388., 389.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([386.], device='cuda:0')
data.h5py: 386 tensor([[386., 387., 388., 389., 390.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([387.], device='cuda:0')
data.h5py: 387 tensor([[387., 388., 389., 390., 391.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([388.], device='cuda:0')
data.h5py: 388 tensor([[388., 389., 390., 391., 392.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([389.], device='cuda:0')
data.h5py: 389 tensor([[389., 390., 391., 392., 393.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([390.], device='cuda:0')
data.h5py: 390 tensor([[390., 391., 392., 393., 394.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([391.], device='cuda:0')
data.h5py: 391 tensor([[391., 392., 393., 394., 395.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([392.], device='cuda:0')
data.h5py: 392 tensor([[392., 393., 394., 395., 396.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([393.], device='cuda:0')
data.h5py: 393 tensor([[393., 394., 395., 396., 397.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([394.], device='cuda:0')
data.h5py: 394 tensor([[394., 395., 396., 397., 398.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([395.], device='cuda:0')
data.h5py: 395 tensor([[395., 396., 397., 398., 399.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([396.], device='cuda:0')
data.h5py: 396 tensor([[396., 397., 398., 399., 400.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([397.], device='cuda:0')
data.h5py: 397 tensor([[397., 398., 399., 400., 401.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([398.], device='cuda:0')
data.h5py: 398 tensor([[398., 399., 400., 401., 402.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([399.], device='cuda:0')
data.h5py: 399 tensor([[399., 400., 401., 402., 403.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([400.], device='cuda:0')
data.h5py: 400 tensor([[400., 401., 402., 403., 404.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([401.], device='cuda:0')
data.h5py: 401 tensor([[401., 402., 403., 404., 405.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([402.], device='cuda:0')
data.h5py: 402 tensor([[402., 403., 404., 405., 406.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([403.], device='cuda:0')
data.h5py: 403 tensor([[403., 404., 405., 406., 407.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([404.], device='cuda:0')
data.h5py: 404 tensor([[404., 405., 406., 407., 408.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([405.], device='cuda:0')
data.h5py: 405 tensor([[405., 406., 407., 408., 409.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([406.], device='cuda:0')
data.h5py: 406 tensor([[406., 407., 408., 409., 410.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([407.], device='cuda:0')
data.h5py: 407 tensor([[407., 408., 409., 410., 411.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([408.], device='cuda:0')
data.h5py: 408 tensor([[408., 409., 410., 411., 412.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([409.], device='cuda:0')
data.h5py: 409 tensor([[409., 410., 411., 412., 413.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([410.], device='cuda:0')
data.h5py: 410 tensor([[410., 411., 412., 413., 414.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([411.], device='cuda:0')
data.h5py: 411 tensor([[411., 412., 413., 414., 415.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([412.], device='cuda:0')
data.h5py: 412 tensor([[412., 413., 414., 415., 416.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([413.], device='cuda:0')
data.h5py: 413 tensor([[413., 414., 415., 416., 417.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([414.], device='cuda:0')
data.h5py: 414 tensor([[414., 415., 416., 417., 418.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([415.], device='cuda:0')
data.h5py: 415 tensor([[415., 416., 417., 418., 419.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([416.], device='cuda:0')
data.h5py: 416 tensor([[416., 417., 418., 419., 420.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([417.], device='cuda:0')
data.h5py: 417 tensor([[417., 418., 419., 420., 421.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([418.], device='cuda:0')
data.h5py: 418 tensor([[418., 419., 420., 421., 422.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([419.], device='cuda:0')
data.h5py: 419 tensor([[419., 420., 421., 422., 423.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([420.], device='cuda:0')
data.h5py: 420 tensor([[420., 421., 422., 423., 424.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([421.], device='cuda:0')
data.h5py: 421 tensor([[421., 422., 423., 424., 425.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([422.], device='cuda:0')
data.h5py: 422 tensor([[422., 423., 424., 425., 426.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([423.], device='cuda:0')
data.h5py: 423 tensor([[423., 424., 425., 426., 427.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([424.], device='cuda:0')
data.h5py: 424 tensor([[424., 425., 426., 427., 428.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([425.], device='cuda:0')
data.h5py: 425 tensor([[425., 426., 427., 428., 429.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([426.], device='cuda:0')
data.h5py: 426 tensor([[426., 427., 428., 429., 430.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([427.], device='cuda:0')
data.h5py: 427 tensor([[427., 428., 429., 430., 431.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([428.], device='cuda:0')
data.h5py: 428 tensor([[428., 429., 430., 431., 432.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([429.], device='cuda:0')
data.h5py: 429 tensor([[429., 430., 431., 432., 433.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([430.], device='cuda:0')
data.h5py: 430 tensor([[430., 431., 432., 433., 434.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([431.], device='cuda:0')
data.h5py: 431 tensor([[431., 432., 433., 434., 435.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([432.], device='cuda:0')
data.h5py: 432 tensor([[432., 433., 434., 435., 436.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([433.], device='cuda:0')
data.h5py: 433 tensor([[433., 434., 435., 436., 437.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([434.], device='cuda:0')
data.h5py: 434 tensor([[434., 435., 436., 437., 438.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([435.], device='cuda:0')
data.h5py: 435 tensor([[435., 436., 437., 438., 439.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([436.], device='cuda:0')
data.h5py: 436 tensor([[436., 437., 438., 439., 440.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([437.], device='cuda:0')
data.h5py: 437 tensor([[437., 438., 439., 440., 441.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([438.], device='cuda:0')
data.h5py: 438 tensor([[438., 439., 440., 441., 442.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([439.], device='cuda:0')
data.h5py: 439 tensor([[439., 440., 441., 442., 443.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([440.], device='cuda:0')
data.h5py: 440 tensor([[440., 441., 442., 443., 444.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([441.], device='cuda:0')
data.h5py: 441 tensor([[441., 442., 443., 444., 445.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([442.], device='cuda:0')
data.h5py: 442 tensor([[442., 443., 444., 445., 446.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([443.], device='cuda:0')
data.h5py: 443 tensor([[443., 444., 445., 446., 447.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([444.], device='cuda:0')
data.h5py: 444 tensor([[444., 445., 446., 447., 448.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([445.], device='cuda:0')
data.h5py: 445 tensor([[445., 446., 447., 448., 449.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([446.], device='cuda:0')
data.h5py: 446 tensor([[446., 447., 448., 449., 450.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([447.], device='cuda:0')
data.h5py: 447 tensor([[447., 448., 449., 450., 451.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([448.], device='cuda:0')
data.h5py: 448 tensor([[448., 449., 450., 451., 452.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([449.], device='cuda:0')
data.h5py: 449 tensor([[449., 450., 451., 452., 453.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([450.], device='cuda:0')
data.h5py: 450 tensor([[450., 451., 452., 453., 454.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([451.], device='cuda:0')
data.h5py: 451 tensor([[451., 452., 453., 454., 455.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([452.], device='cuda:0')
data.h5py: 452 tensor([[452., 453., 454., 455., 456.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([453.], device='cuda:0')
data.h5py: 453 tensor([[453., 454., 455., 456., 457.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([454.], device='cuda:0')
data.h5py: 454 tensor([[454., 455., 456., 457., 458.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([455.], device='cuda:0')
data.h5py: 455 tensor([[455., 456., 457., 458., 459.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([456.], device='cuda:0')
data.h5py: 456 tensor([[456., 457., 458., 459., 460.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([457.], device='cuda:0')
data.h5py: 457 tensor([[457., 458., 459., 460., 461.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([458.], device='cuda:0')
data.h5py: 458 tensor([[458., 459., 460., 461., 462.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([459.], device='cuda:0')
data.h5py: 459 tensor([[459., 460., 461., 462., 463.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([460.], device='cuda:0')
data.h5py: 460 tensor([[460., 461., 462., 463., 464.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([461.], device='cuda:0')
data.h5py: 461 tensor([[461., 462., 463., 464., 465.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([462.], device='cuda:0')
data.h5py: 462 tensor([[462., 463., 464., 465., 466.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([463.], device='cuda:0')
data.h5py: 463 tensor([[463., 464., 465., 466., 467.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([464.], device='cuda:0')
data.h5py: 464 tensor([[464., 465., 466., 467., 468.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([465.], device='cuda:0')
data.h5py: 465 tensor([[465., 466., 467., 468., 469.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([466.], device='cuda:0')
data.h5py: 466 tensor([[466., 467., 468., 469., 470.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([467.], device='cuda:0')
data.h5py: 467 tensor([[467., 468., 469., 470., 471.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([468.], device='cuda:0')
data.h5py: 468 tensor([[468., 469., 470., 471., 472.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([469.], device='cuda:0')
data.h5py: 469 tensor([[469., 470., 471., 472., 473.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([470.], device='cuda:0')
data.h5py: 470 tensor([[470., 471., 472., 473., 474.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([471.], device='cuda:0')
data.h5py: 471 tensor([[471., 472., 473., 474., 475.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([472.], device='cuda:0')
data.h5py: 472 tensor([[472., 473., 474., 475., 476.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([473.], device='cuda:0')
data.h5py: 473 tensor([[473., 474., 475., 476., 477.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([474.], device='cuda:0')
data.h5py: 474 tensor([[474., 475., 476., 477., 478.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([475.], device='cuda:0')
data.h5py: 475 tensor([[475., 476., 477., 478., 479.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([476.], device='cuda:0')
data.h5py: 476 tensor([[476., 477., 478., 479., 480.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([477.], device='cuda:0')
data.h5py: 477 tensor([[477., 478., 479., 480., 481.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([478.], device='cuda:0')
data.h5py: 478 tensor([[478., 479., 480., 481., 482.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([479.], device='cuda:0')
data.h5py: 479 tensor([[479., 480., 481., 482., 483.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([480.], device='cuda:0')
data.h5py: 480 tensor([[480., 481., 482., 483., 484.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([481.], device='cuda:0')
data.h5py: 481 tensor([[481., 482., 483., 484., 485.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([482.], device='cuda:0')
data.h5py: 482 tensor([[482., 483., 484., 485., 486.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([483.], device='cuda:0')
data.h5py: 483 tensor([[483., 484., 485., 486., 487.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([484.], device='cuda:0')
data.h5py: 484 tensor([[484., 485., 486., 487., 488.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([485.], device='cuda:0')
data.h5py: 485 tensor([[485., 486., 487., 488., 489.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([486.], device='cuda:0')
data.h5py: 486 tensor([[486., 487., 488., 489., 490.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([487.], device='cuda:0')
data.h5py: 487 tensor([[487., 488., 489., 490., 491.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([488.], device='cuda:0')
data.h5py: 488 tensor([[488., 489., 490., 491., 492.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([489.], device='cuda:0')
data.h5py: 489 tensor([[489., 490., 491., 492., 493.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([490.], device='cuda:0')
data.h5py: 490 tensor([[490., 491., 492., 493., 494.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([491.], device='cuda:0')
data.h5py: 491 tensor([[491., 492., 493., 494., 495.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([492.], device='cuda:0')
data.h5py: 492 tensor([[492., 493., 494., 495., 496.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([493.], device='cuda:0')
data.h5py: 493 tensor([[493., 494., 495., 496., 497.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([494.], device='cuda:0')
data.h5py: 494 tensor([[494., 495., 496., 497., 498.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([495.], device='cuda:0')
data.h5py: 495 tensor([[495., 496., 497., 498., 499.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([496.], device='cuda:0')
data.h5py: 496 tensor([[496., 497., 498., 499., 500.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([497.], device='cuda:0')
data.h5py: 497 tensor([[497., 498., 499., 500., 501.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([498.], device='cuda:0')
data.h5py: 498 tensor([[498., 499., 500., 501., 502.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([499.], device='cuda:0')
data.h5py: 499 tensor([[499., 500., 501., 502., 503.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([500.], device='cuda:0')
data.h5py: 500 tensor([[500., 501., 502., 503., 504.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([501.], device='cuda:0')
data.h5py: 501 tensor([[501., 502., 503., 504., 505.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([502.], device='cuda:0')
data.h5py: 502 tensor([[502., 503., 504., 505., 506.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([503.], device='cuda:0')
data.h5py: 503 tensor([[503., 504., 505., 506., 507.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([504.], device='cuda:0')
data.h5py: 504 tensor([[504., 505., 506., 507., 508.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([505.], device='cuda:0')
data.h5py: 505 tensor([[505., 506., 507., 508., 509.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([506.], device='cuda:0')
data.h5py: 506 tensor([[506., 507., 508., 509., 510.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([507.], device='cuda:0')
data.h5py: 507 tensor([[507., 508., 509., 510., 511.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([508.], device='cuda:0')
data.h5py: 508 tensor([[508., 509., 510., 511., 512.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([509.], device='cuda:0')
data.h5py: 509 tensor([[509., 510., 511., 512., 513.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([510.], device='cuda:0')
data.h5py: 510 tensor([[510., 511., 512., 513., 514.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([511.], device='cuda:0')
data.h5py: 511 tensor([[511., 512., 513., 514., 515.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([512.], device='cuda:0')
data.h5py: 512 tensor([[512., 513., 514., 515., 516.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([513.], device='cuda:0')
data.h5py: 513 tensor([[513., 514., 515., 516., 517.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([514.], device='cuda:0')
data.h5py: 514 tensor([[514., 515., 516., 517., 518.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([515.], device='cuda:0')
data.h5py: 515 tensor([[515., 516., 517., 518., 519.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([516.], device='cuda:0')
data.h5py: 516 tensor([[516., 517., 518., 519., 520.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([517.], device='cuda:0')
data.h5py: 517 tensor([[517., 518., 519., 520., 521.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([518.], device='cuda:0')
data.h5py: 518 tensor([[518., 519., 520., 521., 522.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([519.], device='cuda:0')
data.h5py: 519 tensor([[519., 520., 521., 522., 523.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([520.], device='cuda:0')
data.h5py: 520 tensor([[520., 521., 522., 523., 524.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([521.], device='cuda:0')
data.h5py: 521 tensor([[521., 522., 523., 524., 525.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([522.], device='cuda:0')
data.h5py: 522 tensor([[522., 523., 524., 525., 526.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([523.], device='cuda:0')
data.h5py: 523 tensor([[523., 524., 525., 526., 527.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([524.], device='cuda:0')
data.h5py: 524 tensor([[524., 525., 526., 527., 528.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([525.], device='cuda:0')
data.h5py: 525 tensor([[525., 526., 527., 528., 529.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([526.], device='cuda:0')
data.h5py: 526 tensor([[526., 527., 528., 529., 530.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([527.], device='cuda:0')
data.h5py: 527 tensor([[527., 528., 529., 530., 531.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([528.], device='cuda:0')
data.h5py: 528 tensor([[528., 529., 530., 531., 532.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([529.], device='cuda:0')
data.h5py: 529 tensor([[529., 530., 531., 532., 533.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([530.], device='cuda:0')
data.h5py: 530 tensor([[530., 531., 532., 533., 534.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([531.], device='cuda:0')
data.h5py: 531 tensor([[531., 532., 533., 534., 535.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([532.], device='cuda:0')
data.h5py: 532 tensor([[532., 533., 534., 535., 536.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([533.], device='cuda:0')
data.h5py: 533 tensor([[533., 534., 535., 536., 537.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([534.], device='cuda:0')
data.h5py: 534 tensor([[534., 535., 536., 537., 538.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([535.], device='cuda:0')
data.h5py: 535 tensor([[535., 536., 537., 538., 539.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([536.], device='cuda:0')
data.h5py: 536 tensor([[536., 537., 538., 539., 540.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([537.], device='cuda:0')
data.h5py: 537 tensor([[537., 538., 539., 540., 541.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([538.], device='cuda:0')
data.h5py: 538 tensor([[538., 539., 540., 541., 542.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([539.], device='cuda:0')
data.h5py: 539 tensor([[539., 540., 541., 542., 543.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([540.], device='cuda:0')
data.h5py: 540 tensor([[540., 541., 542., 543., 544.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([541.], device='cuda:0')
data.h5py: 541 tensor([[541., 542., 543., 544., 545.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([542.], device='cuda:0')
data.h5py: 542 tensor([[542., 543., 544., 545., 546.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([543.], device='cuda:0')
data.h5py: 543 tensor([[543., 544., 545., 546., 547.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([544.], device='cuda:0')
data.h5py: 544 tensor([[544., 545., 546., 547., 548.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([545.], device='cuda:0')
data.h5py: 545 tensor([[545., 546., 547., 548., 549.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([546.], device='cuda:0')
data.h5py: 546 tensor([[546., 547., 548., 549., 550.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([547.], device='cuda:0')
data.h5py: 547 tensor([[547., 548., 549., 550., 551.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([548.], device='cuda:0')
data.h5py: 548 tensor([[548., 549., 550., 551., 552.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([549.], device='cuda:0')
data.h5py: 549 tensor([[549., 550., 551., 552., 553.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([550.], device='cuda:0')
data.h5py: 550 tensor([[550., 551., 552., 553., 554.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([551.], device='cuda:0')
data.h5py: 551 tensor([[551., 552., 553., 554., 555.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([552.], device='cuda:0')
data.h5py: 552 tensor([[552., 553., 554., 555., 556.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([553.], device='cuda:0')
data.h5py: 553 tensor([[553., 554., 555., 556., 557.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([554.], device='cuda:0')
data.h5py: 554 tensor([[554., 555., 556., 557., 558.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([555.], device='cuda:0')
data.h5py: 555 tensor([[555., 556., 557., 558., 559.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([556.], device='cuda:0')
data.h5py: 556 tensor([[556., 557., 558., 559., 560.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([557.], device='cuda:0')
data.h5py: 557 tensor([[557., 558., 559., 560., 561.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([558.], device='cuda:0')
data.h5py: 558 tensor([[558., 559., 560., 561., 562.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([559.], device='cuda:0')
data.h5py: 559 tensor([[559., 560., 561., 562., 563.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([560.], device='cuda:0')
data.h5py: 560 tensor([[560., 561., 562., 563., 564.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([561.], device='cuda:0')
data.h5py: 561 tensor([[561., 562., 563., 564., 565.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([562.], device='cuda:0')
data.h5py: 562 tensor([[562., 563., 564., 565., 566.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([563.], device='cuda:0')
data.h5py: 563 tensor([[563., 564., 565., 566., 567.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([564.], device='cuda:0')
data.h5py: 564 tensor([[564., 565., 566., 567., 568.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([565.], device='cuda:0')
data.h5py: 565 tensor([[565., 566., 567., 568., 569.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([566.], device='cuda:0')
data.h5py: 566 tensor([[566., 567., 568., 569., 570.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([567.], device='cuda:0')
data.h5py: 567 tensor([[567., 568., 569., 570., 571.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([568.], device='cuda:0')
data.h5py: 568 tensor([[568., 569., 570., 571., 572.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([569.], device='cuda:0')
data.h5py: 569 tensor([[569., 570., 571., 572., 573.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([570.], device='cuda:0')
data.h5py: 570 tensor([[570., 571., 572., 573., 574.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([571.], device='cuda:0')
data.h5py: 571 tensor([[571., 572., 573., 574., 575.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([572.], device='cuda:0')
data.h5py: 572 tensor([[572., 573., 574., 575., 576.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([573.], device='cuda:0')
data.h5py: 573 tensor([[573., 574., 575., 576., 577.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([574.], device='cuda:0')
data.h5py: 574 tensor([[574., 575., 576., 577., 578.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([575.], device='cuda:0')
data.h5py: 575 tensor([[575., 576., 577., 578., 579.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([576.], device='cuda:0')
data.h5py: 576 tensor([[576., 577., 578., 579., 580.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([577.], device='cuda:0')
data.h5py: 577 tensor([[577., 578., 579., 580., 581.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([578.], device='cuda:0')
data.h5py: 578 tensor([[578., 579., 580., 581., 582.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([579.], device='cuda:0')
data.h5py: 579 tensor([[579., 580., 581., 582., 583.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([580.], device='cuda:0')
data.h5py: 580 tensor([[580., 581., 582., 583., 584.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([581.], device='cuda:0')
data.h5py: 581 tensor([[581., 582., 583., 584., 585.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([582.], device='cuda:0')
data.h5py: 582 tensor([[582., 583., 584., 585., 586.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([583.], device='cuda:0')
data.h5py: 583 tensor([[583., 584., 585., 586., 587.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([584.], device='cuda:0')
data.h5py: 584 tensor([[584., 585., 586., 587., 588.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([585.], device='cuda:0')
data.h5py: 585 tensor([[585., 586., 587., 588., 589.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([586.], device='cuda:0')
data.h5py: 586 tensor([[586., 587., 588., 589., 590.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([587.], device='cuda:0')
data.h5py: 587 tensor([[587., 588., 589., 590., 591.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([588.], device='cuda:0')
data.h5py: 588 tensor([[588., 589., 590., 591., 592.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([589.], device='cuda:0')
data.h5py: 589 tensor([[589., 590., 591., 592., 593.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([590.], device='cuda:0')
data.h5py: 590 tensor([[590., 591., 592., 593., 594.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([591.], device='cuda:0')
data.h5py: 591 tensor([[591., 592., 593., 594., 595.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([592.], device='cuda:0')
data.h5py: 592 tensor([[592., 593., 594., 595., 596.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([593.], device='cuda:0')
data.h5py: 593 tensor([[593., 594., 595., 596., 597.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([594.], device='cuda:0')
data.h5py: 594 tensor([[594., 595., 596., 597., 598.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([595.], device='cuda:0')
data.h5py: 595 tensor([[595., 596., 597., 598., 599.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([596.], device='cuda:0')
data.h5py: 596 tensor([[596., 597., 598., 599., 600.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([597.], device='cuda:0')
data.h5py: 597 tensor([[597., 598., 599., 600., 601.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([598.], device='cuda:0')
data.h5py: 598 tensor([[598., 599., 600., 601., 602.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([599.], device='cuda:0')
data.h5py: 599 tensor([[599., 600., 601., 602., 603.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([600.], device='cuda:0')
data.h5py: 600 tensor([[600., 601., 602., 603., 604.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([601.], device='cuda:0')
data.h5py: 601 tensor([[601., 602., 603., 604., 605.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([602.], device='cuda:0')
data.h5py: 602 tensor([[602., 603., 604., 605., 606.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([603.], device='cuda:0')
data.h5py: 603 tensor([[603., 604., 605., 606., 607.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([604.], device='cuda:0')
data.h5py: 604 tensor([[604., 605., 606., 607., 608.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([605.], device='cuda:0')
data.h5py: 605 tensor([[605., 606., 607., 608., 609.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([606.], device='cuda:0')
data.h5py: 606 tensor([[606., 607., 608., 609., 610.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([607.], device='cuda:0')
data.h5py: 607 tensor([[607., 608., 609., 610., 611.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([608.], device='cuda:0')
data.h5py: 608 tensor([[608., 609., 610., 611., 612.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([609.], device='cuda:0')
data.h5py: 609 tensor([[609., 610., 611., 612., 613.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([610.], device='cuda:0')
data.h5py: 610 tensor([[610., 611., 612., 613., 614.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([611.], device='cuda:0')
data.h5py: 611 tensor([[611., 612., 613., 614., 615.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([612.], device='cuda:0')
data.h5py: 612 tensor([[612., 613., 614., 615., 616.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([613.], device='cuda:0')
data.h5py: 613 tensor([[613., 614., 615., 616., 617.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([614.], device='cuda:0')
data.h5py: 614 tensor([[614., 615., 616., 617., 618.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([615.], device='cuda:0')
data.h5py: 615 tensor([[615., 616., 617., 618., 619.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([616.], device='cuda:0')
data.h5py: 616 tensor([[616., 617., 618., 619., 620.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([617.], device='cuda:0')
data.h5py: 617 tensor([[617., 618., 619., 620., 621.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([618.], device='cuda:0')
data.h5py: 618 tensor([[618., 619., 620., 621., 622.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([619.], device='cuda:0')
data.h5py: 619 tensor([[619., 620., 621., 622., 623.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([620.], device='cuda:0')
data.h5py: 620 tensor([[620., 621., 622., 623., 624.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([621.], device='cuda:0')
data.h5py: 621 tensor([[621., 622., 623., 624., 625.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([622.], device='cuda:0')
data.h5py: 622 tensor([[622., 623., 624., 625., 626.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([623.], device='cuda:0')
data.h5py: 623 tensor([[623., 624., 625., 626., 627.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([624.], device='cuda:0')
data.h5py: 624 tensor([[624., 625., 626., 627., 628.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([625.], device='cuda:0')
data.h5py: 625 tensor([[625., 626., 627., 628., 629.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([626.], device='cuda:0')
data.h5py: 626 tensor([[626., 627., 628., 629., 630.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([627.], device='cuda:0')
data.h5py: 627 tensor([[627., 628., 629., 630., 631.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([628.], device='cuda:0')
data.h5py: 628 tensor([[628., 629., 630., 631., 632.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([629.], device='cuda:0')
data.h5py: 629 tensor([[629., 630., 631., 632., 633.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([630.], device='cuda:0')
data.h5py: 630 tensor([[630., 631., 632., 633., 634.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([631.], device='cuda:0')
data.h5py: 631 tensor([[631., 632., 633., 634., 635.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([632.], device='cuda:0')
data.h5py: 632 tensor([[632., 633., 634., 635., 636.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([633.], device='cuda:0')
data.h5py: 633 tensor([[633., 634., 635., 636., 637.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([634.], device='cuda:0')
data.h5py: 634 tensor([[634., 635., 636., 637., 638.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([635.], device='cuda:0')
data.h5py: 635 tensor([[635., 636., 637., 638., 639.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([636.], device='cuda:0')
data.h5py: 636 tensor([[636., 637., 638., 639., 640.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([637.], device='cuda:0')
data.h5py: 637 tensor([[637., 638., 639., 640., 641.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([638.], device='cuda:0')
data.h5py: 638 tensor([[638., 639., 640., 641., 642.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([639.], device='cuda:0')
data.h5py: 639 tensor([[639., 640., 641., 642., 643.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([640.], device='cuda:0')
data.h5py: 640 tensor([[640., 641., 642., 643., 644.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([641.], device='cuda:0')
data.h5py: 641 tensor([[641., 642., 643., 644., 645.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([642.], device='cuda:0')
data.h5py: 642 tensor([[642., 643., 644., 645., 646.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([643.], device='cuda:0')
data.h5py: 643 tensor([[643., 644., 645., 646., 647.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([644.], device='cuda:0')
data.h5py: 644 tensor([[644., 645., 646., 647., 648.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([645.], device='cuda:0')
data.h5py: 645 tensor([[645., 646., 647., 648., 649.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([646.], device='cuda:0')
data.h5py: 646 tensor([[646., 647., 648., 649., 650.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([647.], device='cuda:0')
data.h5py: 647 tensor([[647., 648., 649., 650., 651.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([648.], device='cuda:0')
data.h5py: 648 tensor([[648., 649., 650., 651., 652.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([649.], device='cuda:0')
data.h5py: 649 tensor([[649., 650., 651., 652., 653.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([650.], device='cuda:0')
data.h5py: 650 tensor([[650., 651., 652., 653., 654.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([651.], device='cuda:0')
data.h5py: 651 tensor([[651., 652., 653., 654., 655.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([652.], device='cuda:0')
data.h5py: 652 tensor([[652., 653., 654., 655., 656.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([653.], device='cuda:0')
data.h5py: 653 tensor([[653., 654., 655., 656., 657.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([654.], device='cuda:0')
data.h5py: 654 tensor([[654., 655., 656., 657., 658.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([655.], device='cuda:0')
data.h5py: 655 tensor([[655., 656., 657., 658., 659.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([656.], device='cuda:0')
data.h5py: 656 tensor([[656., 657., 658., 659., 660.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([657.], device='cuda:0')
data.h5py: 657 tensor([[657., 658., 659., 660., 661.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([658.], device='cuda:0')
data.h5py: 658 tensor([[658., 659., 660., 661., 662.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([659.], device='cuda:0')
data.h5py: 659 tensor([[659., 660., 661., 662., 663.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([660.], device='cuda:0')
data.h5py: 660 tensor([[660., 661., 662., 663., 664.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([661.], device='cuda:0')
data.h5py: 661 tensor([[661., 662., 663., 664., 665.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([662.], device='cuda:0')
data.h5py: 662 tensor([[662., 663., 664., 665., 666.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([663.], device='cuda:0')
data.h5py: 663 tensor([[663., 664., 665., 666., 667.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([664.], device='cuda:0')
data.h5py: 664 tensor([[664., 665., 666., 667., 668.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([665.], device='cuda:0')
data.h5py: 665 tensor([[665., 666., 667., 668., 669.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([666.], device='cuda:0')
data.h5py: 666 tensor([[666., 667., 668., 669., 670.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([667.], device='cuda:0')
data.h5py: 667 tensor([[667., 668., 669., 670., 671.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([668.], device='cuda:0')
data.h5py: 668 tensor([[668., 669., 670., 671., 672.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([669.], device='cuda:0')
data.h5py: 669 tensor([[669., 670., 671., 672., 673.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([670.], device='cuda:0')
data.h5py: 670 tensor([[670., 671., 672., 673., 674.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([671.], device='cuda:0')
data.h5py: 671 tensor([[671., 672., 673., 674., 675.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([672.], device='cuda:0')
data.h5py: 672 tensor([[672., 673., 674., 675., 676.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([673.], device='cuda:0')
data.h5py: 673 tensor([[673., 674., 675., 676., 677.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([674.], device='cuda:0')
data.h5py: 674 tensor([[674., 675., 676., 677., 678.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([675.], device='cuda:0')
data.h5py: 675 tensor([[675., 676., 677., 678., 679.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([676.], device='cuda:0')
data.h5py: 676 tensor([[676., 677., 678., 679., 680.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([677.], device='cuda:0')
data.h5py: 677 tensor([[677., 678., 679., 680., 681.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([678.], device='cuda:0')
data.h5py: 678 tensor([[678., 679., 680., 681., 682.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([679.], device='cuda:0')
data.h5py: 679 tensor([[679., 680., 681., 682., 683.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([680.], device='cuda:0')
data.h5py: 680 tensor([[680., 681., 682., 683., 684.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([681.], device='cuda:0')
data.h5py: 681 tensor([[681., 682., 683., 684., 685.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([682.], device='cuda:0')
data.h5py: 682 tensor([[682., 683., 684., 685., 686.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([683.], device='cuda:0')
data.h5py: 683 tensor([[683., 684., 685., 686., 687.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([684.], device='cuda:0')
data.h5py: 684 tensor([[684., 685., 686., 687., 688.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([685.], device='cuda:0')
data.h5py: 685 tensor([[685., 686., 687., 688., 689.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([686.], device='cuda:0')
data.h5py: 686 tensor([[686., 687., 688., 689., 690.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([687.], device='cuda:0')
data.h5py: 687 tensor([[687., 688., 689., 690., 691.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([688.], device='cuda:0')
data.h5py: 688 tensor([[688., 689., 690., 691., 692.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([689.], device='cuda:0')
data.h5py: 689 tensor([[689., 690., 691., 692., 693.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([690.], device='cuda:0')
data.h5py: 690 tensor([[690., 691., 692., 693., 694.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([691.], device='cuda:0')
data.h5py: 691 tensor([[691., 692., 693., 694., 695.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([692.], device='cuda:0')
data.h5py: 692 tensor([[692., 693., 694., 695., 696.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([693.], device='cuda:0')
data.h5py: 693 tensor([[693., 694., 695., 696., 697.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([694.], device='cuda:0')
data.h5py: 694 tensor([[694., 695., 696., 697., 698.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([695.], device='cuda:0')
data.h5py: 695 tensor([[695., 696., 697., 698., 699.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([696.], device='cuda:0')
data.h5py: 696 tensor([[696., 697., 698., 699., 700.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([697.], device='cuda:0')
data.h5py: 697 tensor([[697., 698., 699., 700., 701.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([698.], device='cuda:0')
data.h5py: 698 tensor([[698., 699., 700., 701., 702.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([699.], device='cuda:0')
data.h5py: 699 tensor([[699., 700., 701., 702., 703.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([700.], device='cuda:0')
data.h5py: 700 tensor([[700., 701., 702., 703., 704.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([701.], device='cuda:0')
data.h5py: 701 tensor([[701., 702., 703., 704., 705.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([702.], device='cuda:0')
data.h5py: 702 tensor([[702., 703., 704., 705., 706.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([703.], device='cuda:0')
data.h5py: 703 tensor([[703., 704., 705., 706., 707.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([704.], device='cuda:0')
data.h5py: 704 tensor([[704., 705., 706., 707., 708.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([705.], device='cuda:0')
data.h5py: 705 tensor([[705., 706., 707., 708., 709.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([706.], device='cuda:0')
data.h5py: 706 tensor([[706., 707., 708., 709., 710.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([707.], device='cuda:0')
data.h5py: 707 tensor([[707., 708., 709., 710., 711.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([708.], device='cuda:0')
data.h5py: 708 tensor([[708., 709., 710., 711., 712.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([709.], device='cuda:0')
data.h5py: 709 tensor([[709., 710., 711., 712., 713.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([710.], device='cuda:0')
data.h5py: 710 tensor([[710., 711., 712., 713., 714.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([711.], device='cuda:0')
data.h5py: 711 tensor([[711., 712., 713., 714., 715.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([712.], device='cuda:0')
data.h5py: 712 tensor([[712., 713., 714., 715., 716.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([713.], device='cuda:0')
data.h5py: 713 tensor([[713., 714., 715., 716., 717.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([714.], device='cuda:0')
data.h5py: 714 tensor([[714., 715., 716., 717., 718.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([715.], device='cuda:0')
data.h5py: 715 tensor([[715., 716., 717., 718., 719.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([716.], device='cuda:0')
data.h5py: 716 tensor([[716., 717., 718., 719., 720.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([717.], device='cuda:0')
data.h5py: 717 tensor([[717., 718., 719., 720., 721.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([718.], device='cuda:0')
data.h5py: 718 tensor([[718., 719., 720., 721., 722.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([719.], device='cuda:0')
data.h5py: 719 tensor([[719., 720., 721., 722., 723.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([720.], device='cuda:0')
data.h5py: 720 tensor([[720., 721., 722., 723., 724.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([721.], device='cuda:0')
data.h5py: 721 tensor([[721., 722., 723., 724., 725.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([722.], device='cuda:0')
data.h5py: 722 tensor([[722., 723., 724., 725., 726.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([723.], device='cuda:0')
data.h5py: 723 tensor([[723., 724., 725., 726., 727.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([724.], device='cuda:0')
data.h5py: 724 tensor([[724., 725., 726., 727., 728.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([725.], device='cuda:0')
data.h5py: 725 tensor([[725., 726., 727., 728., 729.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([726.], device='cuda:0')
data.h5py: 726 tensor([[726., 727., 728., 729., 730.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([727.], device='cuda:0')
data.h5py: 727 tensor([[727., 728., 729., 730., 731.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([728.], device='cuda:0')
data.h5py: 728 tensor([[728., 729., 730., 731., 732.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([729.], device='cuda:0')
data.h5py: 729 tensor([[729., 730., 731., 732., 733.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([730.], device='cuda:0')
data.h5py: 730 tensor([[730., 731., 732., 733., 734.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([731.], device='cuda:0')
data.h5py: 731 tensor([[731., 732., 733., 734., 735.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([732.], device='cuda:0')
data.h5py: 732 tensor([[732., 733., 734., 735., 736.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([733.], device='cuda:0')
data.h5py: 733 tensor([[733., 734., 735., 736., 737.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([734.], device='cuda:0')
data.h5py: 734 tensor([[734., 735., 736., 737., 738.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([735.], device='cuda:0')
data.h5py: 735 tensor([[735., 736., 737., 738., 739.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([736.], device='cuda:0')
data.h5py: 736 tensor([[736., 737., 738., 739., 740.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([737.], device='cuda:0')
data.h5py: 737 tensor([[737., 738., 739., 740., 741.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([738.], device='cuda:0')
data.h5py: 738 tensor([[738., 739., 740., 741., 742.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([739.], device='cuda:0')
data.h5py: 739 tensor([[739., 740., 741., 742., 743.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([740.], device='cuda:0')
data.h5py: 740 tensor([[740., 741., 742., 743., 744.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([741.], device='cuda:0')
data.h5py: 741 tensor([[741., 742., 743., 744., 745.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([742.], device='cuda:0')
data.h5py: 742 tensor([[742., 743., 744., 745., 746.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([743.], device='cuda:0')
data.h5py: 743 tensor([[743., 744., 745., 746., 747.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([744.], device='cuda:0')
data.h5py: 744 tensor([[744., 745., 746., 747., 748.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([745.], device='cuda:0')
data.h5py: 745 tensor([[745., 746., 747., 748., 749.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([746.], device='cuda:0')
data.h5py: 746 tensor([[746., 747., 748., 749., 750.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([747.], device='cuda:0')
data.h5py: 747 tensor([[747., 748., 749., 750., 751.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([748.], device='cuda:0')
data.h5py: 748 tensor([[748., 749., 750., 751., 752.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([749.], device='cuda:0')
data.h5py: 749 tensor([[749., 750., 751., 752., 753.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([750.], device='cuda:0')
data.h5py: 750 tensor([[750., 751., 752., 753., 754.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([751.], device='cuda:0')
data.h5py: 751 tensor([[751., 752., 753., 754., 755.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([752.], device='cuda:0')
data.h5py: 752 tensor([[752., 753., 754., 755., 756.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([753.], device='cuda:0')
data.h5py: 753 tensor([[753., 754., 755., 756., 757.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([754.], device='cuda:0')
data.h5py: 754 tensor([[754., 755., 756., 757., 758.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([755.], device='cuda:0')
data.h5py: 755 tensor([[755., 756., 757., 758., 759.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([756.], device='cuda:0')
data.h5py: 756 tensor([[756., 757., 758., 759., 760.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([757.], device='cuda:0')
data.h5py: 757 tensor([[757., 758., 759., 760., 761.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([758.], device='cuda:0')
data.h5py: 758 tensor([[758., 759., 760., 761., 762.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([759.], device='cuda:0')
data.h5py: 759 tensor([[759., 760., 761., 762., 763.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([760.], device='cuda:0')
data.h5py: 760 tensor([[760., 761., 762., 763., 764.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([761.], device='cuda:0')
data.h5py: 761 tensor([[761., 762., 763., 764., 765.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([762.], device='cuda:0')
data.h5py: 762 tensor([[762., 763., 764., 765., 766.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([763.], device='cuda:0')
data.h5py: 763 tensor([[763., 764., 765., 766., 767.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([764.], device='cuda:0')
data.h5py: 764 tensor([[764., 765., 766., 767., 768.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([765.], device='cuda:0')
data.h5py: 765 tensor([[765., 766., 767., 768., 769.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([766.], device='cuda:0')
data.h5py: 766 tensor([[766., 767., 768., 769., 770.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([767.], device='cuda:0')
data.h5py: 767 tensor([[767., 768., 769., 770., 771.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([768.], device='cuda:0')
data.h5py: 768 tensor([[768., 769., 770., 771., 772.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([769.], device='cuda:0')
data.h5py: 769 tensor([[769., 770., 771., 772., 773.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([770.], device='cuda:0')
data.h5py: 770 tensor([[770., 771., 772., 773., 774.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([771.], device='cuda:0')
data.h5py: 771 tensor([[771., 772., 773., 774., 775.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([772.], device='cuda:0')
data.h5py: 772 tensor([[772., 773., 774., 775., 776.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([773.], device='cuda:0')
data.h5py: 773 tensor([[773., 774., 775., 776., 777.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([774.], device='cuda:0')
data.h5py: 774 tensor([[774., 775., 776., 777., 778.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([775.], device='cuda:0')
data.h5py: 775 tensor([[775., 776., 777., 778., 779.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([776.], device='cuda:0')
data.h5py: 776 tensor([[776., 777., 778., 779., 780.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([777.], device='cuda:0')
data.h5py: 777 tensor([[777., 778., 779., 780., 781.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([778.], device='cuda:0')
data.h5py: 778 tensor([[778., 779., 780., 781., 782.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([779.], device='cuda:0')
data.h5py: 779 tensor([[779., 780., 781., 782., 783.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([780.], device='cuda:0')
data.h5py: 780 tensor([[780., 781., 782., 783., 784.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([781.], device='cuda:0')
data.h5py: 781 tensor([[781., 782., 783., 784., 785.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([782.], device='cuda:0')
data.h5py: 782 tensor([[782., 783., 784., 785., 786.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([783.], device='cuda:0')
data.h5py: 783 tensor([[783., 784., 785., 786., 787.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([784.], device='cuda:0')
data.h5py: 784 tensor([[784., 785., 786., 787., 788.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([785.], device='cuda:0')
data.h5py: 785 tensor([[785., 786., 787., 788., 789.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([786.], device='cuda:0')
data.h5py: 786 tensor([[786., 787., 788., 789., 790.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([787.], device='cuda:0')
data.h5py: 787 tensor([[787., 788., 789., 790., 791.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([788.], device='cuda:0')
data.h5py: 788 tensor([[788., 789., 790., 791., 792.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([789.], device='cuda:0')
data.h5py: 789 tensor([[789., 790., 791., 792., 793.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([790.], device='cuda:0')
data.h5py: 790 tensor([[790., 791., 792., 793., 794.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([791.], device='cuda:0')
data.h5py: 791 tensor([[791., 792., 793., 794., 795.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([792.], device='cuda:0')
data.h5py: 792 tensor([[792., 793., 794., 795., 796.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([793.], device='cuda:0')
data.h5py: 793 tensor([[793., 794., 795., 796., 797.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([794.], device='cuda:0')
data.h5py: 794 tensor([[794., 795., 796., 797., 798.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([795.], device='cuda:0')
data.h5py: 795 tensor([[795., 796., 797., 798., 799.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([796.], device='cuda:0')
data.h5py: 796 tensor([[796., 797., 798., 799., 800.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([797.], device='cuda:0')
data.h5py: 797 tensor([[797., 798., 799., 800., 801.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([798.], device='cuda:0')
data.h5py: 798 tensor([[798., 799., 800., 801., 802.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([799.], device='cuda:0')
data.h5py: 799 tensor([[799., 800., 801., 802., 803.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([800.], device='cuda:0')
data.h5py: 800 tensor([[800., 801., 802., 803., 804.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([801.], device='cuda:0')
data.h5py: 801 tensor([[801., 802., 803., 804., 805.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([802.], device='cuda:0')
data.h5py: 802 tensor([[802., 803., 804., 805., 806.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([803.], device='cuda:0')
data.h5py: 803 tensor([[803., 804., 805., 806., 807.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([804.], device='cuda:0')
data.h5py: 804 tensor([[804., 805., 806., 807., 808.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([805.], device='cuda:0')
data.h5py: 805 tensor([[805., 806., 807., 808., 809.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([806.], device='cuda:0')
data.h5py: 806 tensor([[806., 807., 808., 809., 810.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([807.], device='cuda:0')
data.h5py: 807 tensor([[807., 808., 809., 810., 811.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([808.], device='cuda:0')
data.h5py: 808 tensor([[808., 809., 810., 811., 812.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([809.], device='cuda:0')
data.h5py: 809 tensor([[809., 810., 811., 812., 813.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([810.], device='cuda:0')
data.h5py: 810 tensor([[810., 811., 812., 813., 814.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([811.], device='cuda:0')
data.h5py: 811 tensor([[811., 812., 813., 814., 815.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([812.], device='cuda:0')
data.h5py: 812 tensor([[812., 813., 814., 815., 816.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([813.], device='cuda:0')
data.h5py: 813 tensor([[813., 814., 815., 816., 817.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([814.], device='cuda:0')
data.h5py: 814 tensor([[814., 815., 816., 817., 818.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([815.], device='cuda:0')
data.h5py: 815 tensor([[815., 816., 817., 818., 819.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([816.], device='cuda:0')
data.h5py: 816 tensor([[816., 817., 818., 819., 820.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([817.], device='cuda:0')
data.h5py: 817 tensor([[817., 818., 819., 820., 821.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([818.], device='cuda:0')
data.h5py: 818 tensor([[818., 819., 820., 821., 822.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([819.], device='cuda:0')
data.h5py: 819 tensor([[819., 820., 821., 822., 823.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([820.], device='cuda:0')
data.h5py: 820 tensor([[820., 821., 822., 823., 824.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([821.], device='cuda:0')
data.h5py: 821 tensor([[821., 822., 823., 824., 825.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([822.], device='cuda:0')
data.h5py: 822 tensor([[822., 823., 824., 825., 826.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([823.], device='cuda:0')
data.h5py: 823 tensor([[823., 824., 825., 826., 827.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([824.], device='cuda:0')
data.h5py: 824 tensor([[824., 825., 826., 827., 828.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([825.], device='cuda:0')
data.h5py: 825 tensor([[825., 826., 827., 828., 829.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([826.], device='cuda:0')
data.h5py: 826 tensor([[826., 827., 828., 829., 830.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([827.], device='cuda:0')
data.h5py: 827 tensor([[827., 828., 829., 830., 831.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([828.], device='cuda:0')
data.h5py: 828 tensor([[828., 829., 830., 831., 832.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([829.], device='cuda:0')
data.h5py: 829 tensor([[829., 830., 831., 832., 833.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([830.], device='cuda:0')
data.h5py: 830 tensor([[830., 831., 832., 833., 834.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([831.], device='cuda:0')
data.h5py: 831 tensor([[831., 832., 833., 834., 835.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([832.], device='cuda:0')
data.h5py: 832 tensor([[832., 833., 834., 835., 836.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([833.], device='cuda:0')
data.h5py: 833 tensor([[833., 834., 835., 836., 837.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([834.], device='cuda:0')
data.h5py: 834 tensor([[834., 835., 836., 837., 838.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([835.], device='cuda:0')
data.h5py: 835 tensor([[835., 836., 837., 838., 839.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([836.], device='cuda:0')
data.h5py: 836 tensor([[836., 837., 838., 839., 840.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([837.], device='cuda:0')
data.h5py: 837 tensor([[837., 838., 839., 840., 841.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([838.], device='cuda:0')
data.h5py: 838 tensor([[838., 839., 840., 841., 842.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([839.], device='cuda:0')
data.h5py: 839 tensor([[839., 840., 841., 842., 843.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([840.], device='cuda:0')
data.h5py: 840 tensor([[840., 841., 842., 843., 844.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([841.], device='cuda:0')
data.h5py: 841 tensor([[841., 842., 843., 844., 845.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([842.], device='cuda:0')
data.h5py: 842 tensor([[842., 843., 844., 845., 846.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([843.], device='cuda:0')
data.h5py: 843 tensor([[843., 844., 845., 846., 847.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([844.], device='cuda:0')
data.h5py: 844 tensor([[844., 845., 846., 847., 848.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([845.], device='cuda:0')
data.h5py: 845 tensor([[845., 846., 847., 848., 849.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([846.], device='cuda:0')
data.h5py: 846 tensor([[846., 847., 848., 849., 850.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([847.], device='cuda:0')
data.h5py: 847 tensor([[847., 848., 849., 850., 851.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([848.], device='cuda:0')
data.h5py: 848 tensor([[848., 849., 850., 851., 852.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([849.], device='cuda:0')
data.h5py: 849 tensor([[849., 850., 851., 852., 853.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([850.], device='cuda:0')
data.h5py: 850 tensor([[850., 851., 852., 853., 854.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([851.], device='cuda:0')
data.h5py: 851 tensor([[851., 852., 853., 854., 855.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([852.], device='cuda:0')
data.h5py: 852 tensor([[852., 853., 854., 855., 856.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([853.], device='cuda:0')
data.h5py: 853 tensor([[853., 854., 855., 856., 857.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([854.], device='cuda:0')
data.h5py: 854 tensor([[854., 855., 856., 857., 858.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([855.], device='cuda:0')
data.h5py: 855 tensor([[855., 856., 857., 858., 859.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([856.], device='cuda:0')
data.h5py: 856 tensor([[856., 857., 858., 859., 860.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([857.], device='cuda:0')
data.h5py: 857 tensor([[857., 858., 859., 860., 861.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([858.], device='cuda:0')
data.h5py: 858 tensor([[858., 859., 860., 861., 862.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([859.], device='cuda:0')
data.h5py: 859 tensor([[859., 860., 861., 862., 863.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([860.], device='cuda:0')
data.h5py: 860 tensor([[860., 861., 862., 863., 864.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([861.], device='cuda:0')
data.h5py: 861 tensor([[861., 862., 863., 864., 865.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([862.], device='cuda:0')
data.h5py: 862 tensor([[862., 863., 864., 865., 866.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([863.], device='cuda:0')
data.h5py: 863 tensor([[863., 864., 865., 866., 867.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([864.], device='cuda:0')
data.h5py: 864 tensor([[864., 865., 866., 867., 868.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([865.], device='cuda:0')
data.h5py: 865 tensor([[865., 866., 867., 868., 869.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([866.], device='cuda:0')
data.h5py: 866 tensor([[866., 867., 868., 869., 870.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([867.], device='cuda:0')
data.h5py: 867 tensor([[867., 868., 869., 870., 871.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([868.], device='cuda:0')
data.h5py: 868 tensor([[868., 869., 870., 871., 872.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([869.], device='cuda:0')
data.h5py: 869 tensor([[869., 870., 871., 872., 873.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([870.], device='cuda:0')
data.h5py: 870 tensor([[870., 871., 872., 873., 874.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([871.], device='cuda:0')
data.h5py: 871 tensor([[871., 872., 873., 874., 875.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([872.], device='cuda:0')
data.h5py: 872 tensor([[872., 873., 874., 875., 876.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([873.], device='cuda:0')
data.h5py: 873 tensor([[873., 874., 875., 876., 877.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([874.], device='cuda:0')
data.h5py: 874 tensor([[874., 875., 876., 877., 878.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([875.], device='cuda:0')
data.h5py: 875 tensor([[875., 876., 877., 878., 879.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([876.], device='cuda:0')
data.h5py: 876 tensor([[876., 877., 878., 879., 880.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([877.], device='cuda:0')
data.h5py: 877 tensor([[877., 878., 879., 880., 881.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([878.], device='cuda:0')
data.h5py: 878 tensor([[878., 879., 880., 881., 882.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([879.], device='cuda:0')
data.h5py: 879 tensor([[879., 880., 881., 882., 883.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([880.], device='cuda:0')
data.h5py: 880 tensor([[880., 881., 882., 883., 884.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([881.], device='cuda:0')
data.h5py: 881 tensor([[881., 882., 883., 884., 885.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([882.], device='cuda:0')
data.h5py: 882 tensor([[882., 883., 884., 885., 886.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([883.], device='cuda:0')
data.h5py: 883 tensor([[883., 884., 885., 886., 887.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([884.], device='cuda:0')
data.h5py: 884 tensor([[884., 885., 886., 887., 888.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([885.], device='cuda:0')
data.h5py: 885 tensor([[885., 886., 887., 888., 889.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([886.], device='cuda:0')
data.h5py: 886 tensor([[886., 887., 888., 889., 890.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([887.], device='cuda:0')
data.h5py: 887 tensor([[887., 888., 889., 890., 891.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([888.], device='cuda:0')
data.h5py: 888 tensor([[888., 889., 890., 891., 892.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([889.], device='cuda:0')
data.h5py: 889 tensor([[889., 890., 891., 892., 893.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([890.], device='cuda:0')
data.h5py: 890 tensor([[890., 891., 892., 893., 894.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([891.], device='cuda:0')
data.h5py: 891 tensor([[891., 892., 893., 894., 895.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([892.], device='cuda:0')
data.h5py: 892 tensor([[892., 893., 894., 895., 896.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([893.], device='cuda:0')
data.h5py: 893 tensor([[893., 894., 895., 896., 897.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([894.], device='cuda:0')
data.h5py: 894 tensor([[894., 895., 896., 897., 898.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([895.], device='cuda:0')
data.h5py: 895 tensor([[895., 896., 897., 898., 899.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([896.], device='cuda:0')
data.h5py: 896 tensor([[896., 897., 898., 899., 900.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([897.], device='cuda:0')
data.h5py: 897 tensor([[897., 898., 899., 900., 901.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([898.], device='cuda:0')
data.h5py: 898 tensor([[898., 899., 900., 901., 902.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([899.], device='cuda:0')
data.h5py: 899 tensor([[899., 900., 901., 902., 903.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([900.], device='cuda:0')
data.h5py: 900 tensor([[900., 901., 902., 903., 904.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([901.], device='cuda:0')
data.h5py: 901 tensor([[901., 902., 903., 904., 905.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([902.], device='cuda:0')
data.h5py: 902 tensor([[902., 903., 904., 905., 906.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([903.], device='cuda:0')
data.h5py: 903 tensor([[903., 904., 905., 906., 907.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([904.], device='cuda:0')
data.h5py: 904 tensor([[904., 905., 906., 907., 908.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([905.], device='cuda:0')
data.h5py: 905 tensor([[905., 906., 907., 908., 909.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([906.], device='cuda:0')
data.h5py: 906 tensor([[906., 907., 908., 909., 910.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([907.], device='cuda:0')
data.h5py: 907 tensor([[907., 908., 909., 910., 911.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([908.], device='cuda:0')
data.h5py: 908 tensor([[908., 909., 910., 911., 912.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([909.], device='cuda:0')
data.h5py: 909 tensor([[909., 910., 911., 912., 913.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([910.], device='cuda:0')
data.h5py: 910 tensor([[910., 911., 912., 913., 914.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([911.], device='cuda:0')
data.h5py: 911 tensor([[911., 912., 913., 914., 915.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([912.], device='cuda:0')
data.h5py: 912 tensor([[912., 913., 914., 915., 916.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([913.], device='cuda:0')
data.h5py: 913 tensor([[913., 914., 915., 916., 917.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([914.], device='cuda:0')
data.h5py: 914 tensor([[914., 915., 916., 917., 918.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([915.], device='cuda:0')
data.h5py: 915 tensor([[915., 916., 917., 918., 919.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([916.], device='cuda:0')
data.h5py: 916 tensor([[916., 917., 918., 919., 920.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([917.], device='cuda:0')
data.h5py: 917 tensor([[917., 918., 919., 920., 921.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([918.], device='cuda:0')
data.h5py: 918 tensor([[918., 919., 920., 921., 922.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([919.], device='cuda:0')
data.h5py: 919 tensor([[919., 920., 921., 922., 923.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([920.], device='cuda:0')
data.h5py: 920 tensor([[920., 921., 922., 923., 924.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([921.], device='cuda:0')
data.h5py: 921 tensor([[921., 922., 923., 924., 925.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([922.], device='cuda:0')
data.h5py: 922 tensor([[922., 923., 924., 925., 926.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([923.], device='cuda:0')
data.h5py: 923 tensor([[923., 924., 925., 926., 927.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([924.], device='cuda:0')
data.h5py: 924 tensor([[924., 925., 926., 927., 928.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([925.], device='cuda:0')
data.h5py: 925 tensor([[925., 926., 927., 928., 929.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([926.], device='cuda:0')
data.h5py: 926 tensor([[926., 927., 928., 929., 930.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([927.], device='cuda:0')
data.h5py: 927 tensor([[927., 928., 929., 930., 931.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([928.], device='cuda:0')
data.h5py: 928 tensor([[928., 929., 930., 931., 932.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([929.], device='cuda:0')
data.h5py: 929 tensor([[929., 930., 931., 932., 933.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([930.], device='cuda:0')
data.h5py: 930 tensor([[930., 931., 932., 933., 934.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([931.], device='cuda:0')
data.h5py: 931 tensor([[931., 932., 933., 934., 935.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([932.], device='cuda:0')
data.h5py: 932 tensor([[932., 933., 934., 935., 936.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([933.], device='cuda:0')
data.h5py: 933 tensor([[933., 934., 935., 936., 937.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([934.], device='cuda:0')
data.h5py: 934 tensor([[934., 935., 936., 937., 938.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([935.], device='cuda:0')
data.h5py: 935 tensor([[935., 936., 937., 938., 939.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([936.], device='cuda:0')
data.h5py: 936 tensor([[936., 937., 938., 939., 940.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([937.], device='cuda:0')
data.h5py: 937 tensor([[937., 938., 939., 940., 941.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([938.], device='cuda:0')
data.h5py: 938 tensor([[938., 939., 940., 941., 942.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([939.], device='cuda:0')
data.h5py: 939 tensor([[939., 940., 941., 942., 943.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([940.], device='cuda:0')
data.h5py: 940 tensor([[940., 941., 942., 943., 944.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([941.], device='cuda:0')
data.h5py: 941 tensor([[941., 942., 943., 944., 945.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([942.], device='cuda:0')
data.h5py: 942 tensor([[942., 943., 944., 945., 946.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([943.], device='cuda:0')
data.h5py: 943 tensor([[943., 944., 945., 946., 947.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([944.], device='cuda:0')
data.h5py: 944 tensor([[944., 945., 946., 947., 948.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([945.], device='cuda:0')
data.h5py: 945 tensor([[945., 946., 947., 948., 949.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([946.], device='cuda:0')
data.h5py: 946 tensor([[946., 947., 948., 949., 950.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([947.], device='cuda:0')
data.h5py: 947 tensor([[947., 948., 949., 950., 951.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([948.], device='cuda:0')
data.h5py: 948 tensor([[948., 949., 950., 951., 952.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([949.], device='cuda:0')
data.h5py: 949 tensor([[949., 950., 951., 952., 953.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([950.], device='cuda:0')
data.h5py: 950 tensor([[950., 951., 952., 953., 954.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([951.], device='cuda:0')
data.h5py: 951 tensor([[951., 952., 953., 954., 955.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([952.], device='cuda:0')
data.h5py: 952 tensor([[952., 953., 954., 955., 956.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([953.], device='cuda:0')
data.h5py: 953 tensor([[953., 954., 955., 956., 957.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([954.], device='cuda:0')
data.h5py: 954 tensor([[954., 955., 956., 957., 958.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([955.], device='cuda:0')
data.h5py: 955 tensor([[955., 956., 957., 958., 959.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([956.], device='cuda:0')
data.h5py: 956 tensor([[956., 957., 958., 959., 960.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([957.], device='cuda:0')
data.h5py: 957 tensor([[957., 958., 959., 960., 961.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([958.], device='cuda:0')
data.h5py: 958 tensor([[958., 959., 960., 961., 962.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([959.], device='cuda:0')
data.h5py: 959 tensor([[959., 960., 961., 962., 963.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([960.], device='cuda:0')
data.h5py: 960 tensor([[960., 961., 962., 963., 964.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([961.], device='cuda:0')
data.h5py: 961 tensor([[961., 962., 963., 964., 965.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([962.], device='cuda:0')
data.h5py: 962 tensor([[962., 963., 964., 965., 966.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([963.], device='cuda:0')
data.h5py: 963 tensor([[963., 964., 965., 966., 967.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([964.], device='cuda:0')
data.h5py: 964 tensor([[964., 965., 966., 967., 968.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([965.], device='cuda:0')
data.h5py: 965 tensor([[965., 966., 967., 968., 969.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([966.], device='cuda:0')
data.h5py: 966 tensor([[966., 967., 968., 969., 970.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([967.], device='cuda:0')
data.h5py: 967 tensor([[967., 968., 969., 970., 971.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([968.], device='cuda:0')
data.h5py: 968 tensor([[968., 969., 970., 971., 972.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([969.], device='cuda:0')
data.h5py: 969 tensor([[969., 970., 971., 972., 973.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([970.], device='cuda:0')
data.h5py: 970 tensor([[970., 971., 972., 973., 974.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([971.], device='cuda:0')
data.h5py: 971 tensor([[971., 972., 973., 974., 975.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([972.], device='cuda:0')
data.h5py: 972 tensor([[972., 973., 974., 975., 976.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([973.], device='cuda:0')
data.h5py: 973 tensor([[973., 974., 975., 976., 977.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([974.], device='cuda:0')
data.h5py: 974 tensor([[974., 975., 976., 977., 978.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([975.], device='cuda:0')
data.h5py: 975 tensor([[975., 976., 977., 978., 979.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([976.], device='cuda:0')
data.h5py: 976 tensor([[976., 977., 978., 979., 980.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([977.], device='cuda:0')
data.h5py: 977 tensor([[977., 978., 979., 980., 981.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([978.], device='cuda:0')
data.h5py: 978 tensor([[978., 979., 980., 981., 982.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([979.], device='cuda:0')
data.h5py: 979 tensor([[979., 980., 981., 982., 983.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([980.], device='cuda:0')
data.h5py: 980 tensor([[980., 981., 982., 983., 984.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([981.], device='cuda:0')
data.h5py: 981 tensor([[981., 982., 983., 984., 985.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([982.], device='cuda:0')
data.h5py: 982 tensor([[982., 983., 984., 985., 986.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([983.], device='cuda:0')
data.h5py: 983 tensor([[983., 984., 985., 986., 987.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([984.], device='cuda:0')
data.h5py: 984 tensor([[984., 985., 986., 987., 988.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([985.], device='cuda:0')
data.h5py: 985 tensor([[985., 986., 987., 988., 989.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([986.], device='cuda:0')
data.h5py: 986 tensor([[986., 987., 988., 989., 990.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([987.], device='cuda:0')
data.h5py: 987 tensor([[987., 988., 989., 990., 991.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([988.], device='cuda:0')
data.h5py: 988 tensor([[988., 989., 990., 991., 992.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([989.], device='cuda:0')
data.h5py: 989 tensor([[989., 990., 991., 992., 993.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([990.], device='cuda:0')
data.h5py: 990 tensor([[990., 991., 992., 993., 994.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([991.], device='cuda:0')
data.h5py: 991 tensor([[991., 992., 993., 994., 995.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([992.], device='cuda:0')
data.h5py: 992 tensor([[992., 993., 994., 995., 996.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([993.], device='cuda:0')
data.h5py: 993 tensor([[993., 994., 995., 996., 997.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([994.], device='cuda:0')
data.h5py: 994 tensor([[994., 995., 996., 997., 998.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([995.], device='cuda:0')
data.h5py: 995 tensor([[995., 996., 997., 998., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([996.], device='cuda:0')
data.h5py: 996 tensor([[996., 997., 998., 999., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([997.], device='cuda:0')
data.h5py: 997 tensor([[997., 998., 999., 999., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([998.], device='cuda:0')
data.h5py: 998 tensor([[998., 999., 999., 999., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([999.], device='cuda:0')
data.h5py: 999 tensor([[999., 999., 999., 999., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([1000.], device='cuda:0')
Example 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
data.webtools: All required datasets are available.
data.h5py: 0 tensor([[0., 0., 0., 0., 0.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([1.], device='cuda:0')
data.h5py: 1 tensor([[0., 0., 0., 0., 1.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([2.], device='cuda:0')
data.h5py: 2 tensor([[0., 0., 0., 1., 2.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([3.], device='cuda:0')
data.h5py: 3 tensor([[0., 0., 1., 2., 3.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([4.], device='cuda:0')
data.h5py: 4 tensor([[0., 1., 2., 3., 4.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([5.], device='cuda:0')
data.h5py: 5 tensor([[1., 2., 3., 4., 5.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([6.], device='cuda:0')
data.h5py: 6 tensor([[2., 3., 4., 5., 6.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([7.], device='cuda:0')
data.h5py: 7 tensor([[3., 4., 5., 6., 7.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([8.], device='cuda:0')
data.h5py: 8 tensor([[4., 5., 6., 7., 8.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([9.], device='cuda:0')
data.h5py: 9 tensor([[5., 6., 7., 8., 9.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([10.], device='cuda:0')
data.h5py: 10 tensor([[ 6., 7., 8., 9., 10.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([11.], device='cuda:0')
data.h5py: 11 tensor([[ 7., 8., 9., 10., 11.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([12.], device='cuda:0')
data.h5py: 12 tensor([[ 8., 9., 10., 11., 12.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([13.], device='cuda:0')
data.h5py: 13 tensor([[ 9., 10., 11., 12., 13.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([14.], device='cuda:0')
data.h5py: 14 tensor([[10., 11., 12., 13., 14.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([15.], device='cuda:0')
data.h5py: 15 tensor([[11., 12., 13., 14., 15.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([16.], device='cuda:0')
data.h5py: 16 tensor([[12., 13., 14., 15., 16.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([17.], device='cuda:0')
data.h5py: 17 tensor([[13., 14., 15., 16., 17.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([18.], device='cuda:0')
data.h5py: 18 tensor([[14., 15., 16., 17., 18.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([19.], device='cuda:0')
data.h5py: 19 tensor([[15., 16., 17., 18., 19.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([20.], device='cuda:0')
data.h5py: 20 tensor([[20., 20., 20., 20., 20.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([21.], device='cuda:0')
data.h5py: 21 tensor([[20., 20., 20., 20., 21.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([22.], device='cuda:0')
data.h5py: 22 tensor([[20., 20., 20., 21., 22.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([23.], device='cuda:0')
data.h5py: 23 tensor([[20., 20., 21., 22., 23.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([24.], device='cuda:0')
data.h5py: 24 tensor([[20., 21., 22., 23., 24.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([25.], device='cuda:0')
data.h5py: 25 tensor([[21., 22., 23., 24., 25.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([26.], device='cuda:0')
data.h5py: 26 tensor([[22., 23., 24., 25., 26.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([27.], device='cuda:0')
data.h5py: 27 tensor([[23., 24., 25., 26., 27.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([28.], device='cuda:0')
data.h5py: 28 tensor([[24., 25., 26., 27., 28.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([29.], device='cuda:0')
data.h5py: 29 tensor([[25., 26., 27., 28., 29.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([30.], device='cuda:0')
data.h5py: 30 tensor([[26., 27., 28., 29., 30.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([31.], device='cuda:0')
data.h5py: 31 tensor([[27., 28., 29., 30., 31.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([32.], device='cuda:0')
data.h5py: 32 tensor([[28., 29., 30., 31., 32.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([33.], device='cuda:0')
data.h5py: 33 tensor([[29., 30., 31., 32., 33.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([34.], device='cuda:0')
data.h5py: 34 tensor([[30., 31., 32., 33., 34.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([35.], device='cuda:0')
data.h5py: 35 tensor([[31., 32., 33., 34., 35.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([36.], device='cuda:0')
data.h5py: 36 tensor([[32., 33., 34., 35., 36.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([37.], device='cuda:0')
data.h5py: 37 tensor([[33., 34., 35., 36., 37.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([38.], device='cuda:0')
data.h5py: 38 tensor([[38., 38., 38., 38., 38.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([39.], device='cuda:0')
data.h5py: 39 tensor([[38., 38., 38., 38., 39.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([40.], device='cuda:0')
data.h5py: 40 tensor([[38., 38., 38., 39., 40.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([41.], device='cuda:0')
data.h5py: 41 tensor([[38., 38., 39., 40., 41.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([42.], device='cuda:0')
data.h5py: 42 tensor([[38., 39., 40., 41., 42.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([43.], device='cuda:0')
data.h5py: 43 tensor([[39., 40., 41., 42., 43.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([44.], device='cuda:0')
data.h5py: 44 tensor([[40., 41., 42., 43., 44.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([45.], device='cuda:0')
data.h5py: 45 tensor([[41., 42., 43., 44., 45.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([46.], device='cuda:0')
data.h5py: 46 tensor([[42., 43., 44., 45., 46.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([47.], device='cuda:0')
data.h5py: 47 tensor([[43., 44., 45., 46., 47.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([48.], device='cuda:0')
data.h5py: 48 tensor([[44., 45., 46., 47., 48.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([49.], device='cuda:0')
data.h5py: 49 tensor([[45., 46., 47., 48., 49.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([50.], device='cuda:0')
data.h5py: 50 tensor([[46., 47., 48., 49., 50.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([51.], device='cuda:0')
data.h5py: 51 tensor([[51., 51., 51., 51., 51.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([52.], device='cuda:0')
data.h5py: 52 tensor([[51., 51., 51., 51., 52.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([53.], device='cuda:0')
data.h5py: 53 tensor([[51., 51., 51., 52., 53.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([54.], device='cuda:0')
data.h5py: 54 tensor([[51., 51., 52., 53., 54.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([55.], device='cuda:0')
data.h5py: 55 tensor([[51., 52., 53., 54., 55.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([56.], device='cuda:0')
data.h5py: 56 tensor([[52., 53., 54., 55., 56.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([57.], device='cuda:0')
data.h5py: 57 tensor([[53., 54., 55., 56., 57.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([58.], device='cuda:0')
data.h5py: 58 tensor([[54., 55., 56., 57., 58.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([59.], device='cuda:0')
data.h5py: 59 tensor([[55., 56., 57., 58., 59.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([60.], device='cuda:0')
data.h5py: 60 tensor([[56., 57., 58., 59., 60.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([61.], device='cuda:0')
data.h5py: 61 tensor([[57., 58., 59., 60., 61.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([62.], device='cuda:0')
data.h5py: 62 tensor([[58., 59., 60., 61., 62.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([63.], device='cuda:0')
data.h5py: 63 tensor([[59., 60., 61., 62., 63.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([64.], device='cuda:0')
data.h5py: 64 tensor([[60., 61., 62., 63., 64.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([65.], device='cuda:0')
data.h5py: 65 tensor([[61., 62., 63., 64., 65.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([66.], device='cuda:0')
data.h5py: 66 tensor([[62., 63., 64., 65., 66.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([67.], device='cuda:0')
data.h5py: 67 tensor([[63., 64., 65., 66., 67.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([68.], device='cuda:0')
data.h5py: 68 tensor([[64., 65., 66., 67., 68.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([69.], device='cuda:0')
data.h5py: 69 tensor([[65., 66., 67., 68., 69.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([70.], device='cuda:0')
data.h5py: 70 tensor([[70., 70., 70., 70., 70.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([71.], device='cuda:0')
data.h5py: 71 tensor([[70., 70., 70., 70., 71.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([72.], device='cuda:0')
data.h5py: 72 tensor([[70., 70., 70., 71., 72.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([73.], device='cuda:0')
data.h5py: 73 tensor([[70., 70., 71., 72., 73.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([74.], device='cuda:0')
data.h5py: 74 tensor([[70., 71., 72., 73., 74.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([75.], device='cuda:0')
data.h5py: 75 tensor([[71., 72., 73., 74., 75.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([76.], device='cuda:0')
data.h5py: 76 tensor([[72., 73., 74., 75., 76.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([77.], device='cuda:0')
data.h5py: 77 tensor([[73., 74., 75., 76., 77.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([78.], device='cuda:0')
data.h5py: 78 tensor([[74., 75., 76., 77., 78.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([79.], device='cuda:0')
data.h5py: 79 tensor([[75., 76., 77., 78., 79.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([80.], device='cuda:0')
data.h5py: 80 tensor([[76., 77., 78., 79., 80.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([81.], device='cuda:0')
data.h5py: 81 tensor([[77., 78., 79., 80., 81.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([82.], device='cuda:0')
data.h5py: 82 tensor([[82., 82., 82., 82., 82.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([83.], device='cuda:0')
data.h5py: 83 tensor([[82., 82., 82., 82., 83.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([84.], device='cuda:0')
data.h5py: 84 tensor([[82., 82., 82., 83., 84.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([85.], device='cuda:0')
data.h5py: 85 tensor([[82., 82., 83., 84., 85.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([86.], device='cuda:0')
data.h5py: 86 tensor([[82., 83., 84., 85., 86.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([87.], device='cuda:0')
data.h5py: 87 tensor([[83., 84., 85., 86., 87.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([88.], device='cuda:0')
data.h5py: 88 tensor([[84., 85., 86., 87., 88.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([89.], device='cuda:0')
data.h5py: 89 tensor([[85., 86., 87., 88., 89.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([90.], device='cuda:0')
data.h5py: 90 tensor([[86., 87., 88., 89., 90.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([91.], device='cuda:0')
data.h5py: 91 tensor([[87., 88., 89., 90., 91.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([92.], device='cuda:0')
data.h5py: 92 tensor([[88., 89., 90., 91., 92.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([93.], device='cuda:0')
data.h5py: 93 tensor([[89., 90., 91., 92., 93.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([94.], device='cuda:0')
data.h5py: 94 tensor([[90., 91., 92., 93., 94.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([95.], device='cuda:0')
data.h5py: 95 tensor([[91., 92., 93., 94., 95.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([96.], device='cuda:0')
data.h5py: 96 tensor([[92., 93., 94., 95., 96.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([97.], device='cuda:0')
data.h5py: 97 tensor([[93., 94., 95., 96., 97.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([98.], device='cuda:0')
data.h5py: 98 tensor([[94., 95., 96., 97., 98.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([99.], device='cuda:0')
data.h5py: 99 tensor([[95., 96., 97., 98., 99.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([100.], device='cuda:0')
data.h5py: 100 tensor([[100., 100., 100., 100., 100.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([101.], device='cuda:0')
data.h5py: 101 tensor([[100., 100., 100., 100., 101.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([102.], device='cuda:0')
data.h5py: 102 tensor([[100., 100., 100., 101., 102.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([103.], device='cuda:0')
data.h5py: 103 tensor([[100., 100., 101., 102., 103.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([104.], device='cuda:0')
data.h5py: 104 tensor([[100., 101., 102., 103., 104.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([105.], device='cuda:0')
data.h5py: 105 tensor([[101., 102., 103., 104., 105.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([106.], device='cuda:0')
data.h5py: 106 tensor([[102., 103., 104., 105., 106.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([107.], device='cuda:0')
data.h5py: 107 tensor([[103., 104., 105., 106., 107.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([108.], device='cuda:0')
data.h5py: 108 tensor([[104., 105., 106., 107., 108.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([109.], device='cuda:0')
data.h5py: 109 tensor([[105., 106., 107., 108., 109.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([110.], device='cuda:0')
data.h5py: 110 tensor([[106., 107., 108., 109., 110.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([111.], device='cuda:0')
data.h5py: 111 tensor([[107., 108., 109., 110., 111.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([112.], device='cuda:0')
data.h5py: 112 tensor([[108., 109., 110., 111., 112.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([113.], device='cuda:0')
data.h5py: 113 tensor([[109., 110., 111., 112., 113.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([114.], device='cuda:0')
data.h5py: 114 tensor([[110., 111., 112., 113., 114.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([115.], device='cuda:0')
data.h5py: 115 tensor([[111., 112., 113., 114., 115.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([116.], device='cuda:0')
data.h5py: 116 tensor([[116., 116., 116., 116., 116.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([117.], device='cuda:0')
data.h5py: 117 tensor([[116., 116., 116., 116., 117.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([118.], device='cuda:0')
data.h5py: 118 tensor([[116., 116., 116., 117., 118.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([119.], device='cuda:0')
data.h5py: 119 tensor([[116., 116., 117., 118., 119.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([120.], device='cuda:0')
data.h5py: 120 tensor([[116., 117., 118., 119., 120.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([121.], device='cuda:0')
data.h5py: 121 tensor([[117., 118., 119., 120., 121.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([122.], device='cuda:0')
data.h5py: 122 tensor([[118., 119., 120., 121., 122.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([123.], device='cuda:0')
data.h5py: 123 tensor([[119., 120., 121., 122., 123.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([124.], device='cuda:0')
data.h5py: 124 tensor([[120., 121., 122., 123., 124.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([125.], device='cuda:0')
data.h5py: 125 tensor([[121., 122., 123., 124., 125.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([126.], device='cuda:0')
data.h5py: 126 tensor([[122., 123., 124., 125., 126.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([127.], device='cuda:0')
data.h5py: 127 tensor([[123., 124., 125., 126., 127.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([128.], device='cuda:0')
data.h5py: 128 tensor([[124., 125., 126., 127., 128.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([129.], device='cuda:0')
data.h5py: 129 tensor([[125., 126., 127., 128., 129.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([130.], device='cuda:0')
data.h5py: 130 tensor([[126., 127., 128., 129., 130.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([131.], device='cuda:0')
data.h5py: 131 tensor([[127., 128., 129., 130., 131.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([132.], device='cuda:0')
data.h5py: 132 tensor([[128., 129., 130., 131., 132.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([133.], device='cuda:0')
data.h5py: 133 tensor([[129., 130., 131., 132., 133.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([134.], device='cuda:0')
data.h5py: 134 tensor([[130., 131., 132., 133., 134.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([135.], device='cuda:0')
data.h5py: 135 tensor([[131., 132., 133., 134., 135.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([136.], device='cuda:0')
data.h5py: 136 tensor([[136., 136., 136., 136., 136.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([137.], device='cuda:0')
data.h5py: 137 tensor([[136., 136., 136., 136., 137.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([138.], device='cuda:0')
data.h5py: 138 tensor([[136., 136., 136., 137., 138.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([139.], device='cuda:0')
data.h5py: 139 tensor([[136., 136., 137., 138., 139.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([140.], device='cuda:0')
data.h5py: 140 tensor([[136., 137., 138., 139., 140.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([141.], device='cuda:0')
data.h5py: 141 tensor([[137., 138., 139., 140., 141.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([142.], device='cuda:0')
data.h5py: 142 tensor([[138., 139., 140., 141., 142.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([143.], device='cuda:0')
data.h5py: 143 tensor([[139., 140., 141., 142., 143.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([144.], device='cuda:0')
data.h5py: 144 tensor([[140., 141., 142., 143., 144.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([145.], device='cuda:0')
data.h5py: 145 tensor([[141., 142., 143., 144., 145.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([146.], device='cuda:0')
data.h5py: 146 tensor([[142., 143., 144., 145., 146.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([147.], device='cuda:0')
data.h5py: 147 tensor([[143., 144., 145., 146., 147.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([148.], device='cuda:0')
data.h5py: 148 tensor([[144., 145., 146., 147., 148.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([149.], device='cuda:0')
data.h5py: 149 tensor([[145., 146., 147., 148., 149.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([150.], device='cuda:0')
data.h5py: 150 tensor([[146., 147., 148., 149., 150.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([151.], device='cuda:0')
data.h5py: 151 tensor([[147., 148., 149., 150., 151.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([152.], device='cuda:0')
data.h5py: 152 tensor([[148., 149., 150., 151., 152.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([153.], device='cuda:0')
data.h5py: 153 tensor([[153., 153., 153., 153., 153.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([154.], device='cuda:0')
data.h5py: 154 tensor([[153., 153., 153., 153., 154.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([155.], device='cuda:0')
data.h5py: 155 tensor([[153., 153., 153., 154., 155.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([156.], device='cuda:0')
data.h5py: 156 tensor([[153., 153., 154., 155., 156.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([157.], device='cuda:0')
data.h5py: 157 tensor([[153., 154., 155., 156., 157.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([158.], device='cuda:0')
data.h5py: 158 tensor([[154., 155., 156., 157., 158.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([159.], device='cuda:0')
data.h5py: 159 tensor([[155., 156., 157., 158., 159.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([160.], device='cuda:0')
data.h5py: 160 tensor([[156., 157., 158., 159., 160.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([161.], device='cuda:0')
data.h5py: 161 tensor([[157., 158., 159., 160., 161.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([162.], device='cuda:0')
data.h5py: 162 tensor([[158., 159., 160., 161., 162.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([163.], device='cuda:0')
data.h5py: 163 tensor([[159., 160., 161., 162., 163.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([164.], device='cuda:0')
data.h5py: 164 tensor([[160., 161., 162., 163., 164.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([165.], device='cuda:0')
data.h5py: 165 tensor([[161., 162., 163., 164., 165.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([166.], device='cuda:0')
data.h5py: 166 tensor([[162., 163., 164., 165., 166.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([167.], device='cuda:0')
data.h5py: 167 tensor([[163., 164., 165., 166., 167.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([168.], device='cuda:0')
data.h5py: 168 tensor([[164., 165., 166., 167., 168.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([169.], device='cuda:0')
data.h5py: 169 tensor([[165., 166., 167., 168., 169.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([170.], device='cuda:0')
data.h5py: 170 tensor([[166., 167., 168., 169., 170.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([171.], device='cuda:0')
data.h5py: 171 tensor([[167., 168., 169., 170., 171.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([172.], device='cuda:0')
data.h5py: 172 tensor([[168., 169., 170., 171., 172.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([173.], device='cuda:0')
data.h5py: 173 tensor([[173., 173., 173., 173., 173.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([174.], device='cuda:0')
data.h5py: 174 tensor([[173., 173., 173., 173., 174.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([175.], device='cuda:0')
data.h5py: 175 tensor([[173., 173., 173., 174., 175.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([176.], device='cuda:0')
data.h5py: 176 tensor([[173., 173., 174., 175., 176.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([177.], device='cuda:0')
data.h5py: 177 tensor([[173., 174., 175., 176., 177.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([178.], device='cuda:0')
data.h5py: 178 tensor([[174., 175., 176., 177., 178.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([179.], device='cuda:0')
data.h5py: 179 tensor([[175., 176., 177., 178., 179.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([180.], device='cuda:0')
data.h5py: 180 tensor([[176., 177., 178., 179., 180.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([181.], device='cuda:0')
data.h5py: 181 tensor([[177., 178., 179., 180., 181.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([182.], device='cuda:0')
data.h5py: 182 tensor([[178., 179., 180., 181., 182.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([183.], device='cuda:0')
data.h5py: 183 tensor([[179., 180., 181., 182., 183.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([184.], device='cuda:0')
data.h5py: 184 tensor([[180., 181., 182., 183., 184.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([185.], device='cuda:0')
data.h5py: 185 tensor([[181., 182., 183., 184., 185.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([186.], device='cuda:0')
data.h5py: 186 tensor([[186., 186., 186., 186., 186.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([187.], device='cuda:0')
data.h5py: 187 tensor([[186., 186., 186., 186., 187.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([188.], device='cuda:0')
data.h5py: 188 tensor([[186., 186., 186., 187., 188.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([189.], device='cuda:0')
data.h5py: 189 tensor([[186., 186., 187., 188., 189.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([190.], device='cuda:0')
data.h5py: 190 tensor([[186., 187., 188., 189., 190.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([191.], device='cuda:0')
data.h5py: 191 tensor([[187., 188., 189., 190., 191.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([192.], device='cuda:0')
data.h5py: 192 tensor([[188., 189., 190., 191., 192.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([193.], device='cuda:0')
data.h5py: 193 tensor([[189., 190., 191., 192., 193.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([194.], device='cuda:0')
data.h5py: 194 tensor([[190., 191., 192., 193., 194.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([195.], device='cuda:0')
data.h5py: 195 tensor([[191., 192., 193., 194., 195.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([196.], device='cuda:0')
data.h5py: 196 tensor([[196., 196., 196., 196., 196.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([197.], device='cuda:0')
data.h5py: 197 tensor([[196., 196., 196., 196., 197.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([198.], device='cuda:0')
data.h5py: 198 tensor([[196., 196., 196., 197., 198.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([199.], device='cuda:0')
data.h5py: 199 tensor([[196., 196., 197., 198., 199.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([200.], device='cuda:0')
data.h5py: 200 tensor([[196., 197., 198., 199., 200.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([201.], device='cuda:0')
data.h5py: 201 tensor([[197., 198., 199., 200., 201.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([202.], device='cuda:0')
data.h5py: 202 tensor([[198., 199., 200., 201., 202.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([203.], device='cuda:0')
data.h5py: 203 tensor([[199., 200., 201., 202., 203.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([204.], device='cuda:0')
data.h5py: 204 tensor([[200., 201., 202., 203., 204.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([205.], device='cuda:0')
data.h5py: 205 tensor([[201., 202., 203., 204., 205.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([206.], device='cuda:0')
data.h5py: 206 tensor([[206., 206., 206., 206., 206.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([207.], device='cuda:0')
data.h5py: 207 tensor([[206., 206., 206., 206., 207.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([208.], device='cuda:0')
data.h5py: 208 tensor([[206., 206., 206., 207., 208.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([209.], device='cuda:0')
data.h5py: 209 tensor([[206., 206., 207., 208., 209.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([210.], device='cuda:0')
data.h5py: 210 tensor([[206., 207., 208., 209., 210.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([211.], device='cuda:0')
data.h5py: 211 tensor([[207., 208., 209., 210., 211.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([212.], device='cuda:0')
data.h5py: 212 tensor([[208., 209., 210., 211., 212.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([213.], device='cuda:0')
data.h5py: 213 tensor([[209., 210., 211., 212., 213.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([214.], device='cuda:0')
data.h5py: 214 tensor([[210., 211., 212., 213., 214.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([215.], device='cuda:0')
data.h5py: 215 tensor([[211., 212., 213., 214., 215.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([216.], device='cuda:0')
data.h5py: 216 tensor([[212., 213., 214., 215., 216.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([217.], device='cuda:0')
data.h5py: 217 tensor([[217., 217., 217., 217., 217.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([218.], device='cuda:0')
data.h5py: 218 tensor([[217., 217., 217., 217., 218.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([219.], device='cuda:0')
data.h5py: 219 tensor([[217., 217., 217., 218., 219.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([220.], device='cuda:0')
data.h5py: 220 tensor([[217., 217., 218., 219., 220.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([221.], device='cuda:0')
data.h5py: 221 tensor([[217., 218., 219., 220., 221.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([222.], device='cuda:0')
data.h5py: 222 tensor([[218., 219., 220., 221., 222.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([223.], device='cuda:0')
data.h5py: 223 tensor([[219., 220., 221., 222., 223.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([224.], device='cuda:0')
data.h5py: 224 tensor([[220., 221., 222., 223., 224.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([225.], device='cuda:0')
data.h5py: 225 tensor([[221., 222., 223., 224., 225.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([226.], device='cuda:0')
data.h5py: 226 tensor([[222., 223., 224., 225., 226.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([227.], device='cuda:0')
data.h5py: 227 tensor([[223., 224., 225., 226., 227.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([228.], device='cuda:0')
data.h5py: 228 tensor([[224., 225., 226., 227., 228.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([229.], device='cuda:0')
data.h5py: 229 tensor([[225., 226., 227., 228., 229.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([230.], device='cuda:0')
data.h5py: 230 tensor([[226., 227., 228., 229., 230.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([231.], device='cuda:0')
data.h5py: 231 tensor([[227., 228., 229., 230., 231.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([232.], device='cuda:0')
data.h5py: 232 tensor([[228., 229., 230., 231., 232.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([233.], device='cuda:0')
data.h5py: 233 tensor([[233., 233., 233., 233., 233.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([234.], device='cuda:0')
data.h5py: 234 tensor([[233., 233., 233., 233., 234.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([235.], device='cuda:0')
data.h5py: 235 tensor([[233., 233., 233., 234., 235.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([236.], device='cuda:0')
data.h5py: 236 tensor([[233., 233., 234., 235., 236.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([237.], device='cuda:0')
data.h5py: 237 tensor([[233., 234., 235., 236., 237.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([238.], device='cuda:0')
data.h5py: 238 tensor([[234., 235., 236., 237., 238.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([239.], device='cuda:0')
data.h5py: 239 tensor([[235., 236., 237., 238., 239.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([240.], device='cuda:0')
data.h5py: 240 tensor([[236., 237., 238., 239., 240.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([241.], device='cuda:0')
data.h5py: 241 tensor([[237., 238., 239., 240., 241.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([242.], device='cuda:0')
data.h5py: 242 tensor([[238., 239., 240., 241., 242.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([243.], device='cuda:0')
data.h5py: 243 tensor([[239., 240., 241., 242., 243.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([244.], device='cuda:0')
data.h5py: 244 tensor([[240., 241., 242., 243., 244.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([245.], device='cuda:0')
data.h5py: 245 tensor([[241., 242., 243., 244., 245.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([246.], device='cuda:0')
data.h5py: 246 tensor([[242., 243., 244., 245., 246.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([247.], device='cuda:0')
data.h5py: 247 tensor([[243., 244., 245., 246., 247.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([248.], device='cuda:0')
data.h5py: 248 tensor([[244., 245., 246., 247., 248.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([249.], device='cuda:0')
data.h5py: 249 tensor([[245., 246., 247., 248., 249.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([250.], device='cuda:0')
data.h5py: 250 tensor([[246., 247., 248., 249., 250.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([251.], device='cuda:0')
data.h5py: 251 tensor([[247., 248., 249., 250., 251.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([252.], device='cuda:0')
data.h5py: 252 tensor([[248., 249., 250., 251., 252.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([253.], device='cuda:0')
data.h5py: 253 tensor([[253., 253., 253., 253., 253.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([254.], device='cuda:0')
data.h5py: 254 tensor([[253., 253., 253., 253., 254.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([255.], device='cuda:0')
data.h5py: 255 tensor([[253., 253., 253., 254., 255.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([256.], device='cuda:0')
data.h5py: 256 tensor([[253., 253., 254., 255., 256.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([257.], device='cuda:0')
data.h5py: 257 tensor([[253., 254., 255., 256., 257.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([258.], device='cuda:0')
data.h5py: 258 tensor([[254., 255., 256., 257., 258.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([259.], device='cuda:0')
data.h5py: 259 tensor([[255., 256., 257., 258., 259.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([260.], device='cuda:0')
data.h5py: 260 tensor([[256., 257., 258., 259., 260.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([261.], device='cuda:0')
data.h5py: 261 tensor([[257., 258., 259., 260., 261.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([262.], device='cuda:0')
data.h5py: 262 tensor([[258., 259., 260., 261., 262.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([263.], device='cuda:0')
data.h5py: 263 tensor([[259., 260., 261., 262., 263.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([264.], device='cuda:0')
data.h5py: 264 tensor([[260., 261., 262., 263., 264.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([265.], device='cuda:0')
data.h5py: 265 tensor([[261., 262., 263., 264., 265.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([266.], device='cuda:0')
data.h5py: 266 tensor([[262., 263., 264., 265., 266.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([267.], device='cuda:0')
data.h5py: 267 tensor([[263., 264., 265., 266., 267.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([268.], device='cuda:0')
data.h5py: 268 tensor([[264., 265., 266., 267., 268.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([269.], device='cuda:0')
data.h5py: 269 tensor([[265., 266., 267., 268., 269.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([270.], device='cuda:0')
data.h5py: 270 tensor([[266., 267., 268., 269., 270.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([271.], device='cuda:0')
data.h5py: 271 tensor([[271., 271., 271., 271., 271.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([272.], device='cuda:0')
data.h5py: 272 tensor([[271., 271., 271., 271., 272.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([273.], device='cuda:0')
data.h5py: 273 tensor([[271., 271., 271., 272., 273.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([274.], device='cuda:0')
data.h5py: 274 tensor([[271., 271., 272., 273., 274.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([275.], device='cuda:0')
data.h5py: 275 tensor([[271., 272., 273., 274., 275.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([276.], device='cuda:0')
data.h5py: 276 tensor([[272., 273., 274., 275., 276.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([277.], device='cuda:0')
data.h5py: 277 tensor([[273., 274., 275., 276., 277.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([278.], device='cuda:0')
data.h5py: 278 tensor([[274., 275., 276., 277., 278.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([279.], device='cuda:0')
data.h5py: 279 tensor([[275., 276., 277., 278., 279.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([280.], device='cuda:0')
data.h5py: 280 tensor([[276., 277., 278., 279., 280.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([281.], device='cuda:0')
data.h5py: 281 tensor([[277., 278., 279., 280., 281.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([282.], device='cuda:0')
data.h5py: 282 tensor([[278., 279., 280., 281., 282.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([283.], device='cuda:0')
data.h5py: 283 tensor([[279., 280., 281., 282., 283.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([284.], device='cuda:0')
data.h5py: 284 tensor([[280., 281., 282., 283., 284.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([285.], device='cuda:0')
data.h5py: 285 tensor([[281., 282., 283., 284., 285.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([286.], device='cuda:0')
data.h5py: 286 tensor([[282., 283., 284., 285., 286.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([287.], device='cuda:0')
data.h5py: 287 tensor([[283., 284., 285., 286., 287.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([288.], device='cuda:0')
data.h5py: 288 tensor([[288., 288., 288., 288., 288.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([289.], device='cuda:0')
data.h5py: 289 tensor([[288., 288., 288., 288., 289.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([290.], device='cuda:0')
data.h5py: 290 tensor([[288., 288., 288., 289., 290.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([291.], device='cuda:0')
data.h5py: 291 tensor([[288., 288., 289., 290., 291.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([292.], device='cuda:0')
data.h5py: 292 tensor([[288., 289., 290., 291., 292.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([293.], device='cuda:0')
data.h5py: 293 tensor([[289., 290., 291., 292., 293.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([294.], device='cuda:0')
data.h5py: 294 tensor([[290., 291., 292., 293., 294.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([295.], device='cuda:0')
data.h5py: 295 tensor([[291., 292., 293., 294., 295.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([296.], device='cuda:0')
data.h5py: 296 tensor([[292., 293., 294., 295., 296.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([297.], device='cuda:0')
data.h5py: 297 tensor([[293., 294., 295., 296., 297.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([298.], device='cuda:0')
data.h5py: 298 tensor([[298., 298., 298., 298., 298.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([299.], device='cuda:0')
data.h5py: 299 tensor([[298., 298., 298., 298., 299.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([300.], device='cuda:0')
data.h5py: 300 tensor([[298., 298., 298., 299., 300.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([301.], device='cuda:0')
data.h5py: 301 tensor([[298., 298., 299., 300., 301.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([302.], device='cuda:0')
data.h5py: 302 tensor([[298., 299., 300., 301., 302.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([303.], device='cuda:0')
data.h5py: 303 tensor([[299., 300., 301., 302., 303.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([304.], device='cuda:0')
data.h5py: 304 tensor([[300., 301., 302., 303., 304.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([305.], device='cuda:0')
data.h5py: 305 tensor([[301., 302., 303., 304., 305.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([306.], device='cuda:0')
data.h5py: 306 tensor([[302., 303., 304., 305., 306.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([307.], device='cuda:0')
data.h5py: 307 tensor([[303., 304., 305., 306., 307.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([308.], device='cuda:0')
data.h5py: 308 tensor([[304., 305., 306., 307., 308.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([309.], device='cuda:0')
data.h5py: 309 tensor([[305., 306., 307., 308., 309.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([310.], device='cuda:0')
data.h5py: 310 tensor([[310., 310., 310., 310., 310.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([311.], device='cuda:0')
data.h5py: 311 tensor([[310., 310., 310., 310., 311.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([312.], device='cuda:0')
data.h5py: 312 tensor([[310., 310., 310., 311., 312.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([313.], device='cuda:0')
data.h5py: 313 tensor([[310., 310., 311., 312., 313.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([314.], device='cuda:0')
data.h5py: 314 tensor([[310., 311., 312., 313., 314.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([315.], device='cuda:0')
data.h5py: 315 tensor([[311., 312., 313., 314., 315.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([316.], device='cuda:0')
data.h5py: 316 tensor([[312., 313., 314., 315., 316.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([317.], device='cuda:0')
data.h5py: 317 tensor([[313., 314., 315., 316., 317.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([318.], device='cuda:0')
data.h5py: 318 tensor([[314., 315., 316., 317., 318.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([319.], device='cuda:0')
data.h5py: 319 tensor([[315., 316., 317., 318., 319.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([320.], device='cuda:0')
data.h5py: 320 tensor([[316., 317., 318., 319., 320.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([321.], device='cuda:0')
data.h5py: 321 tensor([[317., 318., 319., 320., 321.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([322.], device='cuda:0')
data.h5py: 322 tensor([[318., 319., 320., 321., 322.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([323.], device='cuda:0')
data.h5py: 323 tensor([[319., 320., 321., 322., 323.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([324.], device='cuda:0')
data.h5py: 324 tensor([[324., 324., 324., 324., 324.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([325.], device='cuda:0')
data.h5py: 325 tensor([[324., 324., 324., 324., 325.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([326.], device='cuda:0')
data.h5py: 326 tensor([[324., 324., 324., 325., 326.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([327.], device='cuda:0')
data.h5py: 327 tensor([[324., 324., 325., 326., 327.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([328.], device='cuda:0')
data.h5py: 328 tensor([[324., 325., 326., 327., 328.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([329.], device='cuda:0')
data.h5py: 329 tensor([[325., 326., 327., 328., 329.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([330.], device='cuda:0')
data.h5py: 330 tensor([[326., 327., 328., 329., 330.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([331.], device='cuda:0')
data.h5py: 331 tensor([[327., 328., 329., 330., 331.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([332.], device='cuda:0')
data.h5py: 332 tensor([[328., 329., 330., 331., 332.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([333.], device='cuda:0')
data.h5py: 333 tensor([[329., 330., 331., 332., 333.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([334.], device='cuda:0')
data.h5py: 334 tensor([[334., 334., 334., 334., 334.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([335.], device='cuda:0')
data.h5py: 335 tensor([[334., 334., 334., 334., 335.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([336.], device='cuda:0')
data.h5py: 336 tensor([[334., 334., 334., 335., 336.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([337.], device='cuda:0')
data.h5py: 337 tensor([[334., 334., 335., 336., 337.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([338.], device='cuda:0')
data.h5py: 338 tensor([[334., 335., 336., 337., 338.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([339.], device='cuda:0')
data.h5py: 339 tensor([[335., 336., 337., 338., 339.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([340.], device='cuda:0')
data.h5py: 340 tensor([[336., 337., 338., 339., 340.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([341.], device='cuda:0')
data.h5py: 341 tensor([[337., 338., 339., 340., 341.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([342.], device='cuda:0')
data.h5py: 342 tensor([[338., 339., 340., 341., 342.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([343.], device='cuda:0')
data.h5py: 343 tensor([[339., 340., 341., 342., 343.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([344.], device='cuda:0')
data.h5py: 344 tensor([[340., 341., 342., 343., 344.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([345.], device='cuda:0')
data.h5py: 345 tensor([[341., 342., 343., 344., 345.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([346.], device='cuda:0')
data.h5py: 346 tensor([[342., 343., 344., 345., 346.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([347.], device='cuda:0')
data.h5py: 347 tensor([[343., 344., 345., 346., 347.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([348.], device='cuda:0')
data.h5py: 348 tensor([[344., 345., 346., 347., 348.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([349.], device='cuda:0')
data.h5py: 349 tensor([[345., 346., 347., 348., 349.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([350.], device='cuda:0')
data.h5py: 350 tensor([[346., 347., 348., 349., 350.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([351.], device='cuda:0')
data.h5py: 351 tensor([[347., 348., 349., 350., 351.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([352.], device='cuda:0')
data.h5py: 352 tensor([[348., 349., 350., 351., 352.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([353.], device='cuda:0')
data.h5py: 353 tensor([[349., 350., 351., 352., 353.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([354.], device='cuda:0')
data.h5py: 354 tensor([[354., 354., 354., 354., 354.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([355.], device='cuda:0')
data.h5py: 355 tensor([[354., 354., 354., 354., 355.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([356.], device='cuda:0')
data.h5py: 356 tensor([[354., 354., 354., 355., 356.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([357.], device='cuda:0')
data.h5py: 357 tensor([[354., 354., 355., 356., 357.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([358.], device='cuda:0')
data.h5py: 358 tensor([[354., 355., 356., 357., 358.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([359.], device='cuda:0')
data.h5py: 359 tensor([[355., 356., 357., 358., 359.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([360.], device='cuda:0')
data.h5py: 360 tensor([[356., 357., 358., 359., 360.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([361.], device='cuda:0')
data.h5py: 361 tensor([[357., 358., 359., 360., 361.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([362.], device='cuda:0')
data.h5py: 362 tensor([[358., 359., 360., 361., 362.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([363.], device='cuda:0')
data.h5py: 363 tensor([[359., 360., 361., 362., 363.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([364.], device='cuda:0')
data.h5py: 364 tensor([[360., 361., 362., 363., 364.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([365.], device='cuda:0')
data.h5py: 365 tensor([[361., 362., 363., 364., 365.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([366.], device='cuda:0')
data.h5py: 366 tensor([[362., 363., 364., 365., 366.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([367.], device='cuda:0')
data.h5py: 367 tensor([[363., 364., 365., 366., 367.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([368.], device='cuda:0')
data.h5py: 368 tensor([[364., 365., 366., 367., 368.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([369.], device='cuda:0')
data.h5py: 369 tensor([[365., 366., 367., 368., 369.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([370.], device='cuda:0')
data.h5py: 370 tensor([[370., 370., 370., 370., 370.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([371.], device='cuda:0')
data.h5py: 371 tensor([[370., 370., 370., 370., 371.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([372.], device='cuda:0')
data.h5py: 372 tensor([[370., 370., 370., 371., 372.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([373.], device='cuda:0')
data.h5py: 373 tensor([[370., 370., 371., 372., 373.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([374.], device='cuda:0')
data.h5py: 374 tensor([[370., 371., 372., 373., 374.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([375.], device='cuda:0')
data.h5py: 375 tensor([[371., 372., 373., 374., 375.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([376.], device='cuda:0')
data.h5py: 376 tensor([[372., 373., 374., 375., 376.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([377.], device='cuda:0')
data.h5py: 377 tensor([[373., 374., 375., 376., 377.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([378.], device='cuda:0')
data.h5py: 378 tensor([[374., 375., 376., 377., 378.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([379.], device='cuda:0')
data.h5py: 379 tensor([[375., 376., 377., 378., 379.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([380.], device='cuda:0')
data.h5py: 380 tensor([[380., 380., 380., 380., 380.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([381.], device='cuda:0')
data.h5py: 381 tensor([[380., 380., 380., 380., 381.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([382.], device='cuda:0')
data.h5py: 382 tensor([[380., 380., 380., 381., 382.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([383.], device='cuda:0')
data.h5py: 383 tensor([[380., 380., 381., 382., 383.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([384.], device='cuda:0')
data.h5py: 384 tensor([[380., 381., 382., 383., 384.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([385.], device='cuda:0')
data.h5py: 385 tensor([[381., 382., 383., 384., 385.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([386.], device='cuda:0')
data.h5py: 386 tensor([[382., 383., 384., 385., 386.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([387.], device='cuda:0')
data.h5py: 387 tensor([[383., 384., 385., 386., 387.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([388.], device='cuda:0')
data.h5py: 388 tensor([[384., 385., 386., 387., 388.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([389.], device='cuda:0')
data.h5py: 389 tensor([[385., 386., 387., 388., 389.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([390.], device='cuda:0')
data.h5py: 390 tensor([[386., 387., 388., 389., 390.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([391.], device='cuda:0')
data.h5py: 391 tensor([[387., 388., 389., 390., 391.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([392.], device='cuda:0')
data.h5py: 392 tensor([[388., 389., 390., 391., 392.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([393.], device='cuda:0')
data.h5py: 393 tensor([[389., 390., 391., 392., 393.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([394.], device='cuda:0')
data.h5py: 394 tensor([[390., 391., 392., 393., 394.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([395.], device='cuda:0')
data.h5py: 395 tensor([[395., 395., 395., 395., 395.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([396.], device='cuda:0')
data.h5py: 396 tensor([[395., 395., 395., 395., 396.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([397.], device='cuda:0')
data.h5py: 397 tensor([[395., 395., 395., 396., 397.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([398.], device='cuda:0')
data.h5py: 398 tensor([[395., 395., 396., 397., 398.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([399.], device='cuda:0')
data.h5py: 399 tensor([[395., 396., 397., 398., 399.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([400.], device='cuda:0')
data.h5py: 400 tensor([[396., 397., 398., 399., 400.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([401.], device='cuda:0')
data.h5py: 401 tensor([[397., 398., 399., 400., 401.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([402.], device='cuda:0')
data.h5py: 402 tensor([[398., 399., 400., 401., 402.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([403.], device='cuda:0')
data.h5py: 403 tensor([[399., 400., 401., 402., 403.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([404.], device='cuda:0')
data.h5py: 404 tensor([[400., 401., 402., 403., 404.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([405.], device='cuda:0')
data.h5py: 405 tensor([[401., 402., 403., 404., 405.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([406.], device='cuda:0')
data.h5py: 406 tensor([[402., 403., 404., 405., 406.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([407.], device='cuda:0')
data.h5py: 407 tensor([[403., 404., 405., 406., 407.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([408.], device='cuda:0')
data.h5py: 408 tensor([[408., 408., 408., 408., 408.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([409.], device='cuda:0')
data.h5py: 409 tensor([[408., 408., 408., 408., 409.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([410.], device='cuda:0')
data.h5py: 410 tensor([[408., 408., 408., 409., 410.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([411.], device='cuda:0')
data.h5py: 411 tensor([[408., 408., 409., 410., 411.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([412.], device='cuda:0')
data.h5py: 412 tensor([[408., 409., 410., 411., 412.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([413.], device='cuda:0')
data.h5py: 413 tensor([[409., 410., 411., 412., 413.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([414.], device='cuda:0')
data.h5py: 414 tensor([[410., 411., 412., 413., 414.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([415.], device='cuda:0')
data.h5py: 415 tensor([[411., 412., 413., 414., 415.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([416.], device='cuda:0')
data.h5py: 416 tensor([[412., 413., 414., 415., 416.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([417.], device='cuda:0')
data.h5py: 417 tensor([[413., 414., 415., 416., 417.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([418.], device='cuda:0')
data.h5py: 418 tensor([[414., 415., 416., 417., 418.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([419.], device='cuda:0')
data.h5py: 419 tensor([[415., 416., 417., 418., 419.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([420.], device='cuda:0')
data.h5py: 420 tensor([[416., 417., 418., 419., 420.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([421.], device='cuda:0')
data.h5py: 421 tensor([[417., 418., 419., 420., 421.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([422.], device='cuda:0')
data.h5py: 422 tensor([[418., 419., 420., 421., 422.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([423.], device='cuda:0')
data.h5py: 423 tensor([[419., 420., 421., 422., 423.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([424.], device='cuda:0')
data.h5py: 424 tensor([[420., 421., 422., 423., 424.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([425.], device='cuda:0')
data.h5py: 425 tensor([[421., 422., 423., 424., 425.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([426.], device='cuda:0')
data.h5py: 426 tensor([[422., 423., 424., 425., 426.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([427.], device='cuda:0')
data.h5py: 427 tensor([[423., 424., 425., 426., 427.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([428.], device='cuda:0')
data.h5py: 428 tensor([[428., 428., 428., 428., 428.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([429.], device='cuda:0')
data.h5py: 429 tensor([[428., 428., 428., 428., 429.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([430.], device='cuda:0')
data.h5py: 430 tensor([[428., 428., 428., 429., 430.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([431.], device='cuda:0')
data.h5py: 431 tensor([[428., 428., 429., 430., 431.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([432.], device='cuda:0')
data.h5py: 432 tensor([[428., 429., 430., 431., 432.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([433.], device='cuda:0')
data.h5py: 433 tensor([[429., 430., 431., 432., 433.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([434.], device='cuda:0')
data.h5py: 434 tensor([[430., 431., 432., 433., 434.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([435.], device='cuda:0')
data.h5py: 435 tensor([[431., 432., 433., 434., 435.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([436.], device='cuda:0')
data.h5py: 436 tensor([[432., 433., 434., 435., 436.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([437.], device='cuda:0')
data.h5py: 437 tensor([[433., 434., 435., 436., 437.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([438.], device='cuda:0')
data.h5py: 438 tensor([[434., 435., 436., 437., 438.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([439.], device='cuda:0')
data.h5py: 439 tensor([[435., 436., 437., 438., 439.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([440.], device='cuda:0')
data.h5py: 440 tensor([[436., 437., 438., 439., 440.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([441.], device='cuda:0')
data.h5py: 441 tensor([[437., 438., 439., 440., 441.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([442.], device='cuda:0')
data.h5py: 442 tensor([[438., 439., 440., 441., 442.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([443.], device='cuda:0')
data.h5py: 443 tensor([[439., 440., 441., 442., 443.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([444.], device='cuda:0')
data.h5py: 444 tensor([[440., 441., 442., 443., 444.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([445.], device='cuda:0')
data.h5py: 445 tensor([[441., 442., 443., 444., 445.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([446.], device='cuda:0')
data.h5py: 446 tensor([[442., 443., 444., 445., 446.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([447.], device='cuda:0')
data.h5py: 447 tensor([[443., 444., 445., 446., 447.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([448.], device='cuda:0')
data.h5py: 448 tensor([[448., 448., 448., 448., 448.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([449.], device='cuda:0')
data.h5py: 449 tensor([[448., 448., 448., 448., 449.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([450.], device='cuda:0')
data.h5py: 450 tensor([[448., 448., 448., 449., 450.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([451.], device='cuda:0')
data.h5py: 451 tensor([[448., 448., 449., 450., 451.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([452.], device='cuda:0')
data.h5py: 452 tensor([[448., 449., 450., 451., 452.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([453.], device='cuda:0')
data.h5py: 453 tensor([[449., 450., 451., 452., 453.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([454.], device='cuda:0')
data.h5py: 454 tensor([[450., 451., 452., 453., 454.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([455.], device='cuda:0')
data.h5py: 455 tensor([[451., 452., 453., 454., 455.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([456.], device='cuda:0')
data.h5py: 456 tensor([[452., 453., 454., 455., 456.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([457.], device='cuda:0')
data.h5py: 457 tensor([[453., 454., 455., 456., 457.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([458.], device='cuda:0')
data.h5py: 458 tensor([[454., 455., 456., 457., 458.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([459.], device='cuda:0')
data.h5py: 459 tensor([[455., 456., 457., 458., 459.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([460.], device='cuda:0')
data.h5py: 460 tensor([[456., 457., 458., 459., 460.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([461.], device='cuda:0')
data.h5py: 461 tensor([[457., 458., 459., 460., 461.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([462.], device='cuda:0')
data.h5py: 462 tensor([[458., 459., 460., 461., 462.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([463.], device='cuda:0')
data.h5py: 463 tensor([[459., 460., 461., 462., 463.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([464.], device='cuda:0')
data.h5py: 464 tensor([[460., 461., 462., 463., 464.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([465.], device='cuda:0')
data.h5py: 465 tensor([[461., 462., 463., 464., 465.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([466.], device='cuda:0')
data.h5py: 466 tensor([[462., 463., 464., 465., 466.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([467.], device='cuda:0')
data.h5py: 467 tensor([[463., 464., 465., 466., 467.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([468.], device='cuda:0')
data.h5py: 468 tensor([[468., 468., 468., 468., 468.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([469.], device='cuda:0')
data.h5py: 469 tensor([[468., 468., 468., 468., 469.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([470.], device='cuda:0')
data.h5py: 470 tensor([[468., 468., 468., 469., 470.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([471.], device='cuda:0')
data.h5py: 471 tensor([[468., 468., 469., 470., 471.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([472.], device='cuda:0')
data.h5py: 472 tensor([[468., 469., 470., 471., 472.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([473.], device='cuda:0')
data.h5py: 473 tensor([[469., 470., 471., 472., 473.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([474.], device='cuda:0')
data.h5py: 474 tensor([[470., 471., 472., 473., 474.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([475.], device='cuda:0')
data.h5py: 475 tensor([[471., 472., 473., 474., 475.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([476.], device='cuda:0')
data.h5py: 476 tensor([[472., 473., 474., 475., 476.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([477.], device='cuda:0')
data.h5py: 477 tensor([[473., 474., 475., 476., 477.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([478.], device='cuda:0')
data.h5py: 478 tensor([[474., 475., 476., 477., 478.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([479.], device='cuda:0')
data.h5py: 479 tensor([[475., 476., 477., 478., 479.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([480.], device='cuda:0')
data.h5py: 480 tensor([[476., 477., 478., 479., 480.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([481.], device='cuda:0')
data.h5py: 481 tensor([[477., 478., 479., 480., 481.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([482.], device='cuda:0')
data.h5py: 482 tensor([[478., 479., 480., 481., 482.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([483.], device='cuda:0')
data.h5py: 483 tensor([[479., 480., 481., 482., 483.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([484.], device='cuda:0')
data.h5py: 484 tensor([[480., 481., 482., 483., 484.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([485.], device='cuda:0')
data.h5py: 485 tensor([[481., 482., 483., 484., 485.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([486.], device='cuda:0')
data.h5py: 486 tensor([[486., 486., 486., 486., 486.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([487.], device='cuda:0')
data.h5py: 487 tensor([[486., 486., 486., 486., 487.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([488.], device='cuda:0')
data.h5py: 488 tensor([[486., 486., 486., 487., 488.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([489.], device='cuda:0')
data.h5py: 489 tensor([[486., 486., 487., 488., 489.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([490.], device='cuda:0')
data.h5py: 490 tensor([[486., 487., 488., 489., 490.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([491.], device='cuda:0')
data.h5py: 491 tensor([[487., 488., 489., 490., 491.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([492.], device='cuda:0')
data.h5py: 492 tensor([[488., 489., 490., 491., 492.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([493.], device='cuda:0')
data.h5py: 493 tensor([[489., 490., 491., 492., 493.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([494.], device='cuda:0')
data.h5py: 494 tensor([[490., 491., 492., 493., 494.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([495.], device='cuda:0')
data.h5py: 495 tensor([[491., 492., 493., 494., 495.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([496.], device='cuda:0')
data.h5py: 496 tensor([[492., 493., 494., 495., 496.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([497.], device='cuda:0')
data.h5py: 497 tensor([[493., 494., 495., 496., 497.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([498.], device='cuda:0')
data.h5py: 498 tensor([[494., 495., 496., 497., 498.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([499.], device='cuda:0')
data.h5py: 499 tensor([[495., 496., 497., 498., 499.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([500.], device='cuda:0')
data.h5py: 500 tensor([[500., 500., 500., 500., 500.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([501.], device='cuda:0')
data.h5py: 501 tensor([[500., 500., 500., 500., 501.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([502.], device='cuda:0')
data.h5py: 502 tensor([[500., 500., 500., 501., 502.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([503.], device='cuda:0')
data.h5py: 503 tensor([[500., 500., 501., 502., 503.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([504.], device='cuda:0')
data.h5py: 504 tensor([[500., 501., 502., 503., 504.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([505.], device='cuda:0')
data.h5py: 505 tensor([[501., 502., 503., 504., 505.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([506.], device='cuda:0')
data.h5py: 506 tensor([[502., 503., 504., 505., 506.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([507.], device='cuda:0')
data.h5py: 507 tensor([[503., 504., 505., 506., 507.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([508.], device='cuda:0')
data.h5py: 508 tensor([[504., 505., 506., 507., 508.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([509.], device='cuda:0')
data.h5py: 509 tensor([[505., 506., 507., 508., 509.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([510.], device='cuda:0')
data.h5py: 510 tensor([[510., 510., 510., 510., 510.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([511.], device='cuda:0')
data.h5py: 511 tensor([[510., 510., 510., 510., 511.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([512.], device='cuda:0')
data.h5py: 512 tensor([[510., 510., 510., 511., 512.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([513.], device='cuda:0')
data.h5py: 513 tensor([[510., 510., 511., 512., 513.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([514.], device='cuda:0')
data.h5py: 514 tensor([[510., 511., 512., 513., 514.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([515.], device='cuda:0')
data.h5py: 515 tensor([[511., 512., 513., 514., 515.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([516.], device='cuda:0')
data.h5py: 516 tensor([[512., 513., 514., 515., 516.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([517.], device='cuda:0')
data.h5py: 517 tensor([[513., 514., 515., 516., 517.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([518.], device='cuda:0')
data.h5py: 518 tensor([[514., 515., 516., 517., 518.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([519.], device='cuda:0')
data.h5py: 519 tensor([[515., 516., 517., 518., 519.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([520.], device='cuda:0')
data.h5py: 520 tensor([[516., 517., 518., 519., 520.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([521.], device='cuda:0')
data.h5py: 521 tensor([[517., 518., 519., 520., 521.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([522.], device='cuda:0')
data.h5py: 522 tensor([[518., 519., 520., 521., 522.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([523.], device='cuda:0')
data.h5py: 523 tensor([[519., 520., 521., 522., 523.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([524.], device='cuda:0')
data.h5py: 524 tensor([[520., 521., 522., 523., 524.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([525.], device='cuda:0')
data.h5py: 525 tensor([[521., 522., 523., 524., 525.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([526.], device='cuda:0')
data.h5py: 526 tensor([[522., 523., 524., 525., 526.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([527.], device='cuda:0')
data.h5py: 527 tensor([[523., 524., 525., 526., 527.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([528.], device='cuda:0')
data.h5py: 528 tensor([[528., 528., 528., 528., 528.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([529.], device='cuda:0')
data.h5py: 529 tensor([[528., 528., 528., 528., 529.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([530.], device='cuda:0')
data.h5py: 530 tensor([[528., 528., 528., 529., 530.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([531.], device='cuda:0')
data.h5py: 531 tensor([[528., 528., 529., 530., 531.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([532.], device='cuda:0')
data.h5py: 532 tensor([[528., 529., 530., 531., 532.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([533.], device='cuda:0')
data.h5py: 533 tensor([[529., 530., 531., 532., 533.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([534.], device='cuda:0')
data.h5py: 534 tensor([[530., 531., 532., 533., 534.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([535.], device='cuda:0')
data.h5py: 535 tensor([[531., 532., 533., 534., 535.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([536.], device='cuda:0')
data.h5py: 536 tensor([[532., 533., 534., 535., 536.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([537.], device='cuda:0')
data.h5py: 537 tensor([[533., 534., 535., 536., 537.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([538.], device='cuda:0')
data.h5py: 538 tensor([[534., 535., 536., 537., 538.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([539.], device='cuda:0')
data.h5py: 539 tensor([[535., 536., 537., 538., 539.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([540.], device='cuda:0')
data.h5py: 540 tensor([[536., 537., 538., 539., 540.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([541.], device='cuda:0')
data.h5py: 541 tensor([[541., 541., 541., 541., 541.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([542.], device='cuda:0')
data.h5py: 542 tensor([[541., 541., 541., 541., 542.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([543.], device='cuda:0')
data.h5py: 543 tensor([[541., 541., 541., 542., 543.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([544.], device='cuda:0')
data.h5py: 544 tensor([[541., 541., 542., 543., 544.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([545.], device='cuda:0')
data.h5py: 545 tensor([[541., 542., 543., 544., 545.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([546.], device='cuda:0')
data.h5py: 546 tensor([[542., 543., 544., 545., 546.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([547.], device='cuda:0')
data.h5py: 547 tensor([[543., 544., 545., 546., 547.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([548.], device='cuda:0')
data.h5py: 548 tensor([[544., 545., 546., 547., 548.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([549.], device='cuda:0')
data.h5py: 549 tensor([[545., 546., 547., 548., 549.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([550.], device='cuda:0')
data.h5py: 550 tensor([[546., 547., 548., 549., 550.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([551.], device='cuda:0')
data.h5py: 551 tensor([[547., 548., 549., 550., 551.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([552.], device='cuda:0')
data.h5py: 552 tensor([[548., 549., 550., 551., 552.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([553.], device='cuda:0')
data.h5py: 553 tensor([[549., 550., 551., 552., 553.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([554.], device='cuda:0')
data.h5py: 554 tensor([[550., 551., 552., 553., 554.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([555.], device='cuda:0')
data.h5py: 555 tensor([[555., 555., 555., 555., 555.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([556.], device='cuda:0')
data.h5py: 556 tensor([[555., 555., 555., 555., 556.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([557.], device='cuda:0')
data.h5py: 557 tensor([[555., 555., 555., 556., 557.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([558.], device='cuda:0')
data.h5py: 558 tensor([[555., 555., 556., 557., 558.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([559.], device='cuda:0')
data.h5py: 559 tensor([[555., 556., 557., 558., 559.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([560.], device='cuda:0')
data.h5py: 560 tensor([[556., 557., 558., 559., 560.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([561.], device='cuda:0')
data.h5py: 561 tensor([[557., 558., 559., 560., 561.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([562.], device='cuda:0')
data.h5py: 562 tensor([[558., 559., 560., 561., 562.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([563.], device='cuda:0')
data.h5py: 563 tensor([[559., 560., 561., 562., 563.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([564.], device='cuda:0')
data.h5py: 564 tensor([[560., 561., 562., 563., 564.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([565.], device='cuda:0')
data.h5py: 565 tensor([[561., 562., 563., 564., 565.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([566.], device='cuda:0')
data.h5py: 566 tensor([[562., 563., 564., 565., 566.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([567.], device='cuda:0')
data.h5py: 567 tensor([[563., 564., 565., 566., 567.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([568.], device='cuda:0')
data.h5py: 568 tensor([[564., 565., 566., 567., 568.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([569.], device='cuda:0')
data.h5py: 569 tensor([[565., 566., 567., 568., 569.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([570.], device='cuda:0')
data.h5py: 570 tensor([[566., 567., 568., 569., 570.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([571.], device='cuda:0')
data.h5py: 571 tensor([[567., 568., 569., 570., 571.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([572.], device='cuda:0')
data.h5py: 572 tensor([[568., 569., 570., 571., 572.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([573.], device='cuda:0')
data.h5py: 573 tensor([[573., 573., 573., 573., 573.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([574.], device='cuda:0')
data.h5py: 574 tensor([[573., 573., 573., 573., 574.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([575.], device='cuda:0')
data.h5py: 575 tensor([[573., 573., 573., 574., 575.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([576.], device='cuda:0')
data.h5py: 576 tensor([[573., 573., 574., 575., 576.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([577.], device='cuda:0')
data.h5py: 577 tensor([[573., 574., 575., 576., 577.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([578.], device='cuda:0')
data.h5py: 578 tensor([[574., 575., 576., 577., 578.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([579.], device='cuda:0')
data.h5py: 579 tensor([[575., 576., 577., 578., 579.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([580.], device='cuda:0')
data.h5py: 580 tensor([[576., 577., 578., 579., 580.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([581.], device='cuda:0')
data.h5py: 581 tensor([[577., 578., 579., 580., 581.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([582.], device='cuda:0')
data.h5py: 582 tensor([[578., 579., 580., 581., 582.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([583.], device='cuda:0')
data.h5py: 583 tensor([[579., 580., 581., 582., 583.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([584.], device='cuda:0')
data.h5py: 584 tensor([[580., 581., 582., 583., 584.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([585.], device='cuda:0')
data.h5py: 585 tensor([[581., 582., 583., 584., 585.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([586.], device='cuda:0')
data.h5py: 586 tensor([[582., 583., 584., 585., 586.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([587.], device='cuda:0')
data.h5py: 587 tensor([[583., 584., 585., 586., 587.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([588.], device='cuda:0')
data.h5py: 588 tensor([[584., 585., 586., 587., 588.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([589.], device='cuda:0')
data.h5py: 589 tensor([[589., 589., 589., 589., 589.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([590.], device='cuda:0')
data.h5py: 590 tensor([[589., 589., 589., 589., 590.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([591.], device='cuda:0')
data.h5py: 591 tensor([[589., 589., 589., 590., 591.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([592.], device='cuda:0')
data.h5py: 592 tensor([[589., 589., 590., 591., 592.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([593.], device='cuda:0')
data.h5py: 593 tensor([[589., 590., 591., 592., 593.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([594.], device='cuda:0')
data.h5py: 594 tensor([[590., 591., 592., 593., 594.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([595.], device='cuda:0')
data.h5py: 595 tensor([[591., 592., 593., 594., 595.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([596.], device='cuda:0')
data.h5py: 596 tensor([[592., 593., 594., 595., 596.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([597.], device='cuda:0')
data.h5py: 597 tensor([[593., 594., 595., 596., 597.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([598.], device='cuda:0')
data.h5py: 598 tensor([[594., 595., 596., 597., 598.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([599.], device='cuda:0')
data.h5py: 599 tensor([[595., 596., 597., 598., 599.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([600.], device='cuda:0')
data.h5py: 600 tensor([[596., 597., 598., 599., 600.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([601.], device='cuda:0')
data.h5py: 601 tensor([[601., 601., 601., 601., 601.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([602.], device='cuda:0')
data.h5py: 602 tensor([[601., 601., 601., 601., 602.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([603.], device='cuda:0')
data.h5py: 603 tensor([[601., 601., 601., 602., 603.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([604.], device='cuda:0')
data.h5py: 604 tensor([[601., 601., 602., 603., 604.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([605.], device='cuda:0')
data.h5py: 605 tensor([[601., 602., 603., 604., 605.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([606.], device='cuda:0')
data.h5py: 606 tensor([[602., 603., 604., 605., 606.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([607.], device='cuda:0')
data.h5py: 607 tensor([[603., 604., 605., 606., 607.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([608.], device='cuda:0')
data.h5py: 608 tensor([[604., 605., 606., 607., 608.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([609.], device='cuda:0')
data.h5py: 609 tensor([[605., 606., 607., 608., 609.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([610.], device='cuda:0')
data.h5py: 610 tensor([[606., 607., 608., 609., 610.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([611.], device='cuda:0')
data.h5py: 611 tensor([[607., 608., 609., 610., 611.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([612.], device='cuda:0')
data.h5py: 612 tensor([[608., 609., 610., 611., 612.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([613.], device='cuda:0')
data.h5py: 613 tensor([[609., 610., 611., 612., 613.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([614.], device='cuda:0')
data.h5py: 614 tensor([[610., 611., 612., 613., 614.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([615.], device='cuda:0')
data.h5py: 615 tensor([[615., 615., 615., 615., 615.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([616.], device='cuda:0')
data.h5py: 616 tensor([[615., 615., 615., 615., 616.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([617.], device='cuda:0')
data.h5py: 617 tensor([[615., 615., 615., 616., 617.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([618.], device='cuda:0')
data.h5py: 618 tensor([[615., 615., 616., 617., 618.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([619.], device='cuda:0')
data.h5py: 619 tensor([[615., 616., 617., 618., 619.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([620.], device='cuda:0')
data.h5py: 620 tensor([[616., 617., 618., 619., 620.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([621.], device='cuda:0')
data.h5py: 621 tensor([[617., 618., 619., 620., 621.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([622.], device='cuda:0')
data.h5py: 622 tensor([[618., 619., 620., 621., 622.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([623.], device='cuda:0')
data.h5py: 623 tensor([[619., 620., 621., 622., 623.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([624.], device='cuda:0')
data.h5py: 624 tensor([[620., 621., 622., 623., 624.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([625.], device='cuda:0')
data.h5py: 625 tensor([[621., 622., 623., 624., 625.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([626.], device='cuda:0')
data.h5py: 626 tensor([[622., 623., 624., 625., 626.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([627.], device='cuda:0')
data.h5py: 627 tensor([[623., 624., 625., 626., 627.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([628.], device='cuda:0')
data.h5py: 628 tensor([[624., 625., 626., 627., 628.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([629.], device='cuda:0')
data.h5py: 629 tensor([[625., 626., 627., 628., 629.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([630.], device='cuda:0')
data.h5py: 630 tensor([[626., 627., 628., 629., 630.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([631.], device='cuda:0')
data.h5py: 631 tensor([[631., 631., 631., 631., 631.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([632.], device='cuda:0')
data.h5py: 632 tensor([[631., 631., 631., 631., 632.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([633.], device='cuda:0')
data.h5py: 633 tensor([[631., 631., 631., 632., 633.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([634.], device='cuda:0')
data.h5py: 634 tensor([[631., 631., 632., 633., 634.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([635.], device='cuda:0')
data.h5py: 635 tensor([[631., 632., 633., 634., 635.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([636.], device='cuda:0')
data.h5py: 636 tensor([[632., 633., 634., 635., 636.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([637.], device='cuda:0')
data.h5py: 637 tensor([[633., 634., 635., 636., 637.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([638.], device='cuda:0')
data.h5py: 638 tensor([[634., 635., 636., 637., 638.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([639.], device='cuda:0')
data.h5py: 639 tensor([[635., 636., 637., 638., 639.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([640.], device='cuda:0')
data.h5py: 640 tensor([[636., 637., 638., 639., 640.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([641.], device='cuda:0')
data.h5py: 641 tensor([[637., 638., 639., 640., 641.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([642.], device='cuda:0')
data.h5py: 642 tensor([[638., 639., 640., 641., 642.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([643.], device='cuda:0')
data.h5py: 643 tensor([[639., 640., 641., 642., 643.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([644.], device='cuda:0')
data.h5py: 644 tensor([[640., 641., 642., 643., 644.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([645.], device='cuda:0')
data.h5py: 645 tensor([[641., 642., 643., 644., 645.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([646.], device='cuda:0')
data.h5py: 646 tensor([[642., 643., 644., 645., 646.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([647.], device='cuda:0')
data.h5py: 647 tensor([[643., 644., 645., 646., 647.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([648.], device='cuda:0')
data.h5py: 648 tensor([[644., 645., 646., 647., 648.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([649.], device='cuda:0')
data.h5py: 649 tensor([[645., 646., 647., 648., 649.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([650.], device='cuda:0')
data.h5py: 650 tensor([[646., 647., 648., 649., 650.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([651.], device='cuda:0')
data.h5py: 651 tensor([[651., 651., 651., 651., 651.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([652.], device='cuda:0')
data.h5py: 652 tensor([[651., 651., 651., 651., 652.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([653.], device='cuda:0')
data.h5py: 653 tensor([[651., 651., 651., 652., 653.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([654.], device='cuda:0')
data.h5py: 654 tensor([[651., 651., 652., 653., 654.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([655.], device='cuda:0')
data.h5py: 655 tensor([[651., 652., 653., 654., 655.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([656.], device='cuda:0')
data.h5py: 656 tensor([[652., 653., 654., 655., 656.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([657.], device='cuda:0')
data.h5py: 657 tensor([[653., 654., 655., 656., 657.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([658.], device='cuda:0')
data.h5py: 658 tensor([[654., 655., 656., 657., 658.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([659.], device='cuda:0')
data.h5py: 659 tensor([[655., 656., 657., 658., 659.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([660.], device='cuda:0')
data.h5py: 660 tensor([[656., 657., 658., 659., 660.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([661.], device='cuda:0')
data.h5py: 661 tensor([[657., 658., 659., 660., 661.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([662.], device='cuda:0')
data.h5py: 662 tensor([[658., 659., 660., 661., 662.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([663.], device='cuda:0')
data.h5py: 663 tensor([[659., 660., 661., 662., 663.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([664.], device='cuda:0')
data.h5py: 664 tensor([[660., 661., 662., 663., 664.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([665.], device='cuda:0')
data.h5py: 665 tensor([[661., 662., 663., 664., 665.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([666.], device='cuda:0')
data.h5py: 666 tensor([[662., 663., 664., 665., 666.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([667.], device='cuda:0')
data.h5py: 667 tensor([[663., 664., 665., 666., 667.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([668.], device='cuda:0')
data.h5py: 668 tensor([[664., 665., 666., 667., 668.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([669.], device='cuda:0')
data.h5py: 669 tensor([[669., 669., 669., 669., 669.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([670.], device='cuda:0')
data.h5py: 670 tensor([[669., 669., 669., 669., 670.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([671.], device='cuda:0')
data.h5py: 671 tensor([[669., 669., 669., 670., 671.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([672.], device='cuda:0')
data.h5py: 672 tensor([[669., 669., 670., 671., 672.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([673.], device='cuda:0')
data.h5py: 673 tensor([[669., 670., 671., 672., 673.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([674.], device='cuda:0')
data.h5py: 674 tensor([[670., 671., 672., 673., 674.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([675.], device='cuda:0')
data.h5py: 675 tensor([[671., 672., 673., 674., 675.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([676.], device='cuda:0')
data.h5py: 676 tensor([[672., 673., 674., 675., 676.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([677.], device='cuda:0')
data.h5py: 677 tensor([[673., 674., 675., 676., 677.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([678.], device='cuda:0')
data.h5py: 678 tensor([[674., 675., 676., 677., 678.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([679.], device='cuda:0')
data.h5py: 679 tensor([[675., 676., 677., 678., 679.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([680.], device='cuda:0')
data.h5py: 680 tensor([[676., 677., 678., 679., 680.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([681.], device='cuda:0')
data.h5py: 681 tensor([[677., 678., 679., 680., 681.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([682.], device='cuda:0')
data.h5py: 682 tensor([[678., 679., 680., 681., 682.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([683.], device='cuda:0')
data.h5py: 683 tensor([[679., 680., 681., 682., 683.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([684.], device='cuda:0')
data.h5py: 684 tensor([[680., 681., 682., 683., 684.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([685.], device='cuda:0')
data.h5py: 685 tensor([[685., 685., 685., 685., 685.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([686.], device='cuda:0')
data.h5py: 686 tensor([[685., 685., 685., 685., 686.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([687.], device='cuda:0')
data.h5py: 687 tensor([[685., 685., 685., 686., 687.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([688.], device='cuda:0')
data.h5py: 688 tensor([[685., 685., 686., 687., 688.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([689.], device='cuda:0')
data.h5py: 689 tensor([[685., 686., 687., 688., 689.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([690.], device='cuda:0')
data.h5py: 690 tensor([[686., 687., 688., 689., 690.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([691.], device='cuda:0')
data.h5py: 691 tensor([[687., 688., 689., 690., 691.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([692.], device='cuda:0')
data.h5py: 692 tensor([[688., 689., 690., 691., 692.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([693.], device='cuda:0')
data.h5py: 693 tensor([[689., 690., 691., 692., 693.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([694.], device='cuda:0')
data.h5py: 694 tensor([[690., 691., 692., 693., 694.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([695.], device='cuda:0')
data.h5py: 695 tensor([[691., 692., 693., 694., 695.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([696.], device='cuda:0')
data.h5py: 696 tensor([[692., 693., 694., 695., 696.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([697.], device='cuda:0')
data.h5py: 697 tensor([[693., 694., 695., 696., 697.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([698.], device='cuda:0')
data.h5py: 698 tensor([[694., 695., 696., 697., 698.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([699.], device='cuda:0')
data.h5py: 699 tensor([[695., 696., 697., 698., 699.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([700.], device='cuda:0')
data.h5py: 700 tensor([[696., 697., 698., 699., 700.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([701.], device='cuda:0')
data.h5py: 701 tensor([[697., 698., 699., 700., 701.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([702.], device='cuda:0')
data.h5py: 702 tensor([[698., 699., 700., 701., 702.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([703.], device='cuda:0')
data.h5py: 703 tensor([[699., 700., 701., 702., 703.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([704.], device='cuda:0')
data.h5py: 704 tensor([[704., 704., 704., 704., 704.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([705.], device='cuda:0')
data.h5py: 705 tensor([[704., 704., 704., 704., 705.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([706.], device='cuda:0')
data.h5py: 706 tensor([[704., 704., 704., 705., 706.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([707.], device='cuda:0')
data.h5py: 707 tensor([[704., 704., 705., 706., 707.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([708.], device='cuda:0')
data.h5py: 708 tensor([[704., 705., 706., 707., 708.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([709.], device='cuda:0')
data.h5py: 709 tensor([[705., 706., 707., 708., 709.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([710.], device='cuda:0')
data.h5py: 710 tensor([[706., 707., 708., 709., 710.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([711.], device='cuda:0')
data.h5py: 711 tensor([[707., 708., 709., 710., 711.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([712.], device='cuda:0')
data.h5py: 712 tensor([[708., 709., 710., 711., 712.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([713.], device='cuda:0')
data.h5py: 713 tensor([[709., 710., 711., 712., 713.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([714.], device='cuda:0')
data.h5py: 714 tensor([[710., 711., 712., 713., 714.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([715.], device='cuda:0')
data.h5py: 715 tensor([[711., 712., 713., 714., 715.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([716.], device='cuda:0')
data.h5py: 716 tensor([[712., 713., 714., 715., 716.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([717.], device='cuda:0')
data.h5py: 717 tensor([[713., 714., 715., 716., 717.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([718.], device='cuda:0')
data.h5py: 718 tensor([[714., 715., 716., 717., 718.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([719.], device='cuda:0')
data.h5py: 719 tensor([[715., 716., 717., 718., 719.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([720.], device='cuda:0')
data.h5py: 720 tensor([[716., 717., 718., 719., 720.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([721.], device='cuda:0')
data.h5py: 721 tensor([[721., 721., 721., 721., 721.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([722.], device='cuda:0')
data.h5py: 722 tensor([[721., 721., 721., 721., 722.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([723.], device='cuda:0')
data.h5py: 723 tensor([[721., 721., 721., 722., 723.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([724.], device='cuda:0')
data.h5py: 724 tensor([[721., 721., 722., 723., 724.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([725.], device='cuda:0')
data.h5py: 725 tensor([[721., 722., 723., 724., 725.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([726.], device='cuda:0')
data.h5py: 726 tensor([[722., 723., 724., 725., 726.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([727.], device='cuda:0')
data.h5py: 727 tensor([[723., 724., 725., 726., 727.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([728.], device='cuda:0')
data.h5py: 728 tensor([[724., 725., 726., 727., 728.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([729.], device='cuda:0')
data.h5py: 729 tensor([[725., 726., 727., 728., 729.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([730.], device='cuda:0')
data.h5py: 730 tensor([[726., 727., 728., 729., 730.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([731.], device='cuda:0')
data.h5py: 731 tensor([[727., 728., 729., 730., 731.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([732.], device='cuda:0')
data.h5py: 732 tensor([[728., 729., 730., 731., 732.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([733.], device='cuda:0')
data.h5py: 733 tensor([[729., 730., 731., 732., 733.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([734.], device='cuda:0')
data.h5py: 734 tensor([[730., 731., 732., 733., 734.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([735.], device='cuda:0')
data.h5py: 735 tensor([[735., 735., 735., 735., 735.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([736.], device='cuda:0')
data.h5py: 736 tensor([[735., 735., 735., 735., 736.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([737.], device='cuda:0')
data.h5py: 737 tensor([[735., 735., 735., 736., 737.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([738.], device='cuda:0')
data.h5py: 738 tensor([[735., 735., 736., 737., 738.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([739.], device='cuda:0')
data.h5py: 739 tensor([[735., 736., 737., 738., 739.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([740.], device='cuda:0')
data.h5py: 740 tensor([[736., 737., 738., 739., 740.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([741.], device='cuda:0')
data.h5py: 741 tensor([[737., 738., 739., 740., 741.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([742.], device='cuda:0')
data.h5py: 742 tensor([[738., 739., 740., 741., 742.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([743.], device='cuda:0')
data.h5py: 743 tensor([[739., 740., 741., 742., 743.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([744.], device='cuda:0')
data.h5py: 744 tensor([[740., 741., 742., 743., 744.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([745.], device='cuda:0')
data.h5py: 745 tensor([[741., 742., 743., 744., 745.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([746.], device='cuda:0')
data.h5py: 746 tensor([[742., 743., 744., 745., 746.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([747.], device='cuda:0')
data.h5py: 747 tensor([[743., 744., 745., 746., 747.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([748.], device='cuda:0')
data.h5py: 748 tensor([[744., 745., 746., 747., 748.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([749.], device='cuda:0')
data.h5py: 749 tensor([[745., 746., 747., 748., 749.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([750.], device='cuda:0')
data.h5py: 750 tensor([[746., 747., 748., 749., 750.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([751.], device='cuda:0')
data.h5py: 751 tensor([[747., 748., 749., 750., 751.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([752.], device='cuda:0')
data.h5py: 752 tensor([[748., 749., 750., 751., 752.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([753.], device='cuda:0')
data.h5py: 753 tensor([[749., 750., 751., 752., 753.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([754.], device='cuda:0')
data.h5py: 754 tensor([[750., 751., 752., 753., 754.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([755.], device='cuda:0')
data.h5py: 755 tensor([[755., 755., 755., 755., 755.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([756.], device='cuda:0')
data.h5py: 756 tensor([[755., 755., 755., 755., 756.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([757.], device='cuda:0')
data.h5py: 757 tensor([[755., 755., 755., 756., 757.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([758.], device='cuda:0')
data.h5py: 758 tensor([[755., 755., 756., 757., 758.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([759.], device='cuda:0')
data.h5py: 759 tensor([[755., 756., 757., 758., 759.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([760.], device='cuda:0')
data.h5py: 760 tensor([[756., 757., 758., 759., 760.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([761.], device='cuda:0')
data.h5py: 761 tensor([[757., 758., 759., 760., 761.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([762.], device='cuda:0')
data.h5py: 762 tensor([[758., 759., 760., 761., 762.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([763.], device='cuda:0')
data.h5py: 763 tensor([[759., 760., 761., 762., 763.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([764.], device='cuda:0')
data.h5py: 764 tensor([[760., 761., 762., 763., 764.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([765.], device='cuda:0')
data.h5py: 765 tensor([[765., 765., 765., 765., 765.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([766.], device='cuda:0')
data.h5py: 766 tensor([[765., 765., 765., 765., 766.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([767.], device='cuda:0')
data.h5py: 767 tensor([[765., 765., 765., 766., 767.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([768.], device='cuda:0')
data.h5py: 768 tensor([[765., 765., 766., 767., 768.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([769.], device='cuda:0')
data.h5py: 769 tensor([[765., 766., 767., 768., 769.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([770.], device='cuda:0')
data.h5py: 770 tensor([[766., 767., 768., 769., 770.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([771.], device='cuda:0')
data.h5py: 771 tensor([[767., 768., 769., 770., 771.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([772.], device='cuda:0')
data.h5py: 772 tensor([[768., 769., 770., 771., 772.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([773.], device='cuda:0')
data.h5py: 773 tensor([[769., 770., 771., 772., 773.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([774.], device='cuda:0')
data.h5py: 774 tensor([[770., 771., 772., 773., 774.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([775.], device='cuda:0')
data.h5py: 775 tensor([[771., 772., 773., 774., 775.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([776.], device='cuda:0')
data.h5py: 776 tensor([[772., 773., 774., 775., 776.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([777.], device='cuda:0')
data.h5py: 777 tensor([[773., 774., 775., 776., 777.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([778.], device='cuda:0')
data.h5py: 778 tensor([[774., 775., 776., 777., 778.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([779.], device='cuda:0')
data.h5py: 779 tensor([[779., 779., 779., 779., 779.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([780.], device='cuda:0')
data.h5py: 780 tensor([[779., 779., 779., 779., 780.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([781.], device='cuda:0')
data.h5py: 781 tensor([[779., 779., 779., 780., 781.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([782.], device='cuda:0')
data.h5py: 782 tensor([[779., 779., 780., 781., 782.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([783.], device='cuda:0')
data.h5py: 783 tensor([[779., 780., 781., 782., 783.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([784.], device='cuda:0')
data.h5py: 784 tensor([[780., 781., 782., 783., 784.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([785.], device='cuda:0')
data.h5py: 785 tensor([[781., 782., 783., 784., 785.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([786.], device='cuda:0')
data.h5py: 786 tensor([[782., 783., 784., 785., 786.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([787.], device='cuda:0')
data.h5py: 787 tensor([[783., 784., 785., 786., 787.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([788.], device='cuda:0')
data.h5py: 788 tensor([[784., 785., 786., 787., 788.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([789.], device='cuda:0')
data.h5py: 789 tensor([[785., 786., 787., 788., 789.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([790.], device='cuda:0')
data.h5py: 790 tensor([[786., 787., 788., 789., 790.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([791.], device='cuda:0')
data.h5py: 791 tensor([[787., 788., 789., 790., 791.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([792.], device='cuda:0')
data.h5py: 792 tensor([[788., 789., 790., 791., 792.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([793.], device='cuda:0')
data.h5py: 793 tensor([[789., 790., 791., 792., 793.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([794.], device='cuda:0')
data.h5py: 794 tensor([[790., 791., 792., 793., 794.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([795.], device='cuda:0')
data.h5py: 795 tensor([[791., 792., 793., 794., 795.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([796.], device='cuda:0')
data.h5py: 796 tensor([[792., 793., 794., 795., 796.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([797.], device='cuda:0')
data.h5py: 797 tensor([[793., 794., 795., 796., 797.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([798.], device='cuda:0')
data.h5py: 798 tensor([[798., 798., 798., 798., 798.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([799.], device='cuda:0')
data.h5py: 799 tensor([[798., 798., 798., 798., 799.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([800.], device='cuda:0')
data.h5py: 800 tensor([[798., 798., 798., 799., 800.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([801.], device='cuda:0')
data.h5py: 801 tensor([[798., 798., 799., 800., 801.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([802.], device='cuda:0')
data.h5py: 802 tensor([[798., 799., 800., 801., 802.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([803.], device='cuda:0')
data.h5py: 803 tensor([[799., 800., 801., 802., 803.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([804.], device='cuda:0')
data.h5py: 804 tensor([[800., 801., 802., 803., 804.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([805.], device='cuda:0')
data.h5py: 805 tensor([[801., 802., 803., 804., 805.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([806.], device='cuda:0')
data.h5py: 806 tensor([[802., 803., 804., 805., 806.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([807.], device='cuda:0')
data.h5py: 807 tensor([[803., 804., 805., 806., 807.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([808.], device='cuda:0')
data.h5py: 808 tensor([[804., 805., 806., 807., 808.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([809.], device='cuda:0')
data.h5py: 809 tensor([[805., 806., 807., 808., 809.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([810.], device='cuda:0')
data.h5py: 810 tensor([[806., 807., 808., 809., 810.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([811.], device='cuda:0')
data.h5py: 811 tensor([[807., 808., 809., 810., 811.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([812.], device='cuda:0')
data.h5py: 812 tensor([[808., 809., 810., 811., 812.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([813.], device='cuda:0')
data.h5py: 813 tensor([[813., 813., 813., 813., 813.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([814.], device='cuda:0')
data.h5py: 814 tensor([[813., 813., 813., 813., 814.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([815.], device='cuda:0')
data.h5py: 815 tensor([[813., 813., 813., 814., 815.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([816.], device='cuda:0')
data.h5py: 816 tensor([[813., 813., 814., 815., 816.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([817.], device='cuda:0')
data.h5py: 817 tensor([[813., 814., 815., 816., 817.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([818.], device='cuda:0')
data.h5py: 818 tensor([[814., 815., 816., 817., 818.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([819.], device='cuda:0')
data.h5py: 819 tensor([[815., 816., 817., 818., 819.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([820.], device='cuda:0')
data.h5py: 820 tensor([[816., 817., 818., 819., 820.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([821.], device='cuda:0')
data.h5py: 821 tensor([[817., 818., 819., 820., 821.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([822.], device='cuda:0')
data.h5py: 822 tensor([[818., 819., 820., 821., 822.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([823.], device='cuda:0')
data.h5py: 823 tensor([[819., 820., 821., 822., 823.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([824.], device='cuda:0')
data.h5py: 824 tensor([[820., 821., 822., 823., 824.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([825.], device='cuda:0')
data.h5py: 825 tensor([[821., 822., 823., 824., 825.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([826.], device='cuda:0')
data.h5py: 826 tensor([[822., 823., 824., 825., 826.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([827.], device='cuda:0')
data.h5py: 827 tensor([[823., 824., 825., 826., 827.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([828.], device='cuda:0')
data.h5py: 828 tensor([[824., 825., 826., 827., 828.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([829.], device='cuda:0')
data.h5py: 829 tensor([[825., 826., 827., 828., 829.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([830.], device='cuda:0')
data.h5py: 830 tensor([[826., 827., 828., 829., 830.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([831.], device='cuda:0')
data.h5py: 831 tensor([[831., 831., 831., 831., 831.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([832.], device='cuda:0')
data.h5py: 832 tensor([[831., 831., 831., 831., 832.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([833.], device='cuda:0')
data.h5py: 833 tensor([[831., 831., 831., 832., 833.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([834.], device='cuda:0')
data.h5py: 834 tensor([[831., 831., 832., 833., 834.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([835.], device='cuda:0')
data.h5py: 835 tensor([[831., 832., 833., 834., 835.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([836.], device='cuda:0')
data.h5py: 836 tensor([[832., 833., 834., 835., 836.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([837.], device='cuda:0')
data.h5py: 837 tensor([[833., 834., 835., 836., 837.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([838.], device='cuda:0')
data.h5py: 838 tensor([[834., 835., 836., 837., 838.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([839.], device='cuda:0')
data.h5py: 839 tensor([[835., 836., 837., 838., 839.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([840.], device='cuda:0')
data.h5py: 840 tensor([[836., 837., 838., 839., 840.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([841.], device='cuda:0')
data.h5py: 841 tensor([[837., 838., 839., 840., 841.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([842.], device='cuda:0')
data.h5py: 842 tensor([[842., 842., 842., 842., 842.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([843.], device='cuda:0')
data.h5py: 843 tensor([[842., 842., 842., 842., 843.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([844.], device='cuda:0')
data.h5py: 844 tensor([[842., 842., 842., 843., 844.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([845.], device='cuda:0')
data.h5py: 845 tensor([[842., 842., 843., 844., 845.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([846.], device='cuda:0')
data.h5py: 846 tensor([[842., 843., 844., 845., 846.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([847.], device='cuda:0')
data.h5py: 847 tensor([[843., 844., 845., 846., 847.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([848.], device='cuda:0')
data.h5py: 848 tensor([[844., 845., 846., 847., 848.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([849.], device='cuda:0')
data.h5py: 849 tensor([[845., 846., 847., 848., 849.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([850.], device='cuda:0')
data.h5py: 850 tensor([[846., 847., 848., 849., 850.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([851.], device='cuda:0')
data.h5py: 851 tensor([[847., 848., 849., 850., 851.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([852.], device='cuda:0')
data.h5py: 852 tensor([[848., 849., 850., 851., 852.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([853.], device='cuda:0')
data.h5py: 853 tensor([[849., 850., 851., 852., 853.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([854.], device='cuda:0')
data.h5py: 854 tensor([[850., 851., 852., 853., 854.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([855.], device='cuda:0')
data.h5py: 855 tensor([[851., 852., 853., 854., 855.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([856.], device='cuda:0')
data.h5py: 856 tensor([[852., 853., 854., 855., 856.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([857.], device='cuda:0')
data.h5py: 857 tensor([[853., 854., 855., 856., 857.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([858.], device='cuda:0')
data.h5py: 858 tensor([[858., 858., 858., 858., 858.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([859.], device='cuda:0')
data.h5py: 859 tensor([[858., 858., 858., 858., 859.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([860.], device='cuda:0')
data.h5py: 860 tensor([[858., 858., 858., 859., 860.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([861.], device='cuda:0')
data.h5py: 861 tensor([[858., 858., 859., 860., 861.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([862.], device='cuda:0')
data.h5py: 862 tensor([[858., 859., 860., 861., 862.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([863.], device='cuda:0')
data.h5py: 863 tensor([[859., 860., 861., 862., 863.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([864.], device='cuda:0')
data.h5py: 864 tensor([[860., 861., 862., 863., 864.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([865.], device='cuda:0')
data.h5py: 865 tensor([[861., 862., 863., 864., 865.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([866.], device='cuda:0')
data.h5py: 866 tensor([[862., 863., 864., 865., 866.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([867.], device='cuda:0')
data.h5py: 867 tensor([[863., 864., 865., 866., 867.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([868.], device='cuda:0')
data.h5py: 868 tensor([[864., 865., 866., 867., 868.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([869.], device='cuda:0')
data.h5py: 869 tensor([[865., 866., 867., 868., 869.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([870.], device='cuda:0')
data.h5py: 870 tensor([[866., 867., 868., 869., 870.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([871.], device='cuda:0')
data.h5py: 871 tensor([[867., 868., 869., 870., 871.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([872.], device='cuda:0')
data.h5py: 872 tensor([[868., 869., 870., 871., 872.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([873.], device='cuda:0')
data.h5py: 873 tensor([[869., 870., 871., 872., 873.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([874.], device='cuda:0')
data.h5py: 874 tensor([[870., 871., 872., 873., 874.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([875.], device='cuda:0')
data.h5py: 875 tensor([[871., 872., 873., 874., 875.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([876.], device='cuda:0')
data.h5py: 876 tensor([[872., 873., 874., 875., 876.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([877.], device='cuda:0')
data.h5py: 877 tensor([[877., 877., 877., 877., 877.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([878.], device='cuda:0')
data.h5py: 878 tensor([[877., 877., 877., 877., 878.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([879.], device='cuda:0')
data.h5py: 879 tensor([[877., 877., 877., 878., 879.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([880.], device='cuda:0')
data.h5py: 880 tensor([[877., 877., 878., 879., 880.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([881.], device='cuda:0')
data.h5py: 881 tensor([[877., 878., 879., 880., 881.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([882.], device='cuda:0')
data.h5py: 882 tensor([[878., 879., 880., 881., 882.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([883.], device='cuda:0')
data.h5py: 883 tensor([[879., 880., 881., 882., 883.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([884.], device='cuda:0')
data.h5py: 884 tensor([[880., 881., 882., 883., 884.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([885.], device='cuda:0')
data.h5py: 885 tensor([[881., 882., 883., 884., 885.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([886.], device='cuda:0')
data.h5py: 886 tensor([[882., 883., 884., 885., 886.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([887.], device='cuda:0')
data.h5py: 887 tensor([[883., 884., 885., 886., 887.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([888.], device='cuda:0')
data.h5py: 888 tensor([[884., 885., 886., 887., 888.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([889.], device='cuda:0')
data.h5py: 889 tensor([[885., 886., 887., 888., 889.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([890.], device='cuda:0')
data.h5py: 890 tensor([[890., 890., 890., 890., 890.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([891.], device='cuda:0')
data.h5py: 891 tensor([[890., 890., 890., 890., 891.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([892.], device='cuda:0')
data.h5py: 892 tensor([[890., 890., 890., 891., 892.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([893.], device='cuda:0')
data.h5py: 893 tensor([[890., 890., 891., 892., 893.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([894.], device='cuda:0')
data.h5py: 894 tensor([[890., 891., 892., 893., 894.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([895.], device='cuda:0')
data.h5py: 895 tensor([[891., 892., 893., 894., 895.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([896.], device='cuda:0')
data.h5py: 896 tensor([[892., 893., 894., 895., 896.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([897.], device='cuda:0')
data.h5py: 897 tensor([[893., 894., 895., 896., 897.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([898.], device='cuda:0')
data.h5py: 898 tensor([[894., 895., 896., 897., 898.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([899.], device='cuda:0')
data.h5py: 899 tensor([[895., 896., 897., 898., 899.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([900.], device='cuda:0')
data.h5py: 900 tensor([[896., 897., 898., 899., 900.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([901.], device='cuda:0')
data.h5py: 901 tensor([[897., 898., 899., 900., 901.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([902.], device='cuda:0')
data.h5py: 902 tensor([[898., 899., 900., 901., 902.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([903.], device='cuda:0')
data.h5py: 903 tensor([[899., 900., 901., 902., 903.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([904.], device='cuda:0')
data.h5py: 904 tensor([[900., 901., 902., 903., 904.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([905.], device='cuda:0')
data.h5py: 905 tensor([[901., 902., 903., 904., 905.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([906.], device='cuda:0')
data.h5py: 906 tensor([[902., 903., 904., 905., 906.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([907.], device='cuda:0')
data.h5py: 907 tensor([[907., 907., 907., 907., 907.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([908.], device='cuda:0')
data.h5py: 908 tensor([[907., 907., 907., 907., 908.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([909.], device='cuda:0')
data.h5py: 909 tensor([[907., 907., 907., 908., 909.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([910.], device='cuda:0')
data.h5py: 910 tensor([[907., 907., 908., 909., 910.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([911.], device='cuda:0')
data.h5py: 911 tensor([[907., 908., 909., 910., 911.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([912.], device='cuda:0')
data.h5py: 912 tensor([[908., 909., 910., 911., 912.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([913.], device='cuda:0')
data.h5py: 913 tensor([[909., 910., 911., 912., 913.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([914.], device='cuda:0')
data.h5py: 914 tensor([[910., 911., 912., 913., 914.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([915.], device='cuda:0')
data.h5py: 915 tensor([[911., 912., 913., 914., 915.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([916.], device='cuda:0')
data.h5py: 916 tensor([[912., 913., 914., 915., 916.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([917.], device='cuda:0')
data.h5py: 917 tensor([[913., 914., 915., 916., 917.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([918.], device='cuda:0')
data.h5py: 918 tensor([[914., 915., 916., 917., 918.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([919.], device='cuda:0')
data.h5py: 919 tensor([[915., 916., 917., 918., 919.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([920.], device='cuda:0')
data.h5py: 920 tensor([[920., 920., 920., 920., 920.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([921.], device='cuda:0')
data.h5py: 921 tensor([[920., 920., 920., 920., 921.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([922.], device='cuda:0')
data.h5py: 922 tensor([[920., 920., 920., 921., 922.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([923.], device='cuda:0')
data.h5py: 923 tensor([[920., 920., 921., 922., 923.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([924.], device='cuda:0')
data.h5py: 924 tensor([[920., 921., 922., 923., 924.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([925.], device='cuda:0')
data.h5py: 925 tensor([[921., 922., 923., 924., 925.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([926.], device='cuda:0')
data.h5py: 926 tensor([[922., 923., 924., 925., 926.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([927.], device='cuda:0')
data.h5py: 927 tensor([[923., 924., 925., 926., 927.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([928.], device='cuda:0')
data.h5py: 928 tensor([[924., 925., 926., 927., 928.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([929.], device='cuda:0')
data.h5py: 929 tensor([[925., 926., 927., 928., 929.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([930.], device='cuda:0')
data.h5py: 930 tensor([[926., 927., 928., 929., 930.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([931.], device='cuda:0')
data.h5py: 931 tensor([[927., 928., 929., 930., 931.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([932.], device='cuda:0')
data.h5py: 932 tensor([[928., 929., 930., 931., 932.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([933.], device='cuda:0')
data.h5py: 933 tensor([[929., 930., 931., 932., 933.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([934.], device='cuda:0')
data.h5py: 934 tensor([[930., 931., 932., 933., 934.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([935.], device='cuda:0')
data.h5py: 935 tensor([[931., 932., 933., 934., 935.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([936.], device='cuda:0')
data.h5py: 936 tensor([[932., 933., 934., 935., 936.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([937.], device='cuda:0')
data.h5py: 937 tensor([[937., 937., 937., 937., 937.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([938.], device='cuda:0')
data.h5py: 938 tensor([[937., 937., 937., 937., 938.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([939.], device='cuda:0')
data.h5py: 939 tensor([[937., 937., 937., 938., 939.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([940.], device='cuda:0')
data.h5py: 940 tensor([[937., 937., 938., 939., 940.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([941.], device='cuda:0')
data.h5py: 941 tensor([[937., 938., 939., 940., 941.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([942.], device='cuda:0')
data.h5py: 942 tensor([[938., 939., 940., 941., 942.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([943.], device='cuda:0')
data.h5py: 943 tensor([[939., 940., 941., 942., 943.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([944.], device='cuda:0')
data.h5py: 944 tensor([[940., 941., 942., 943., 944.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([945.], device='cuda:0')
data.h5py: 945 tensor([[941., 942., 943., 944., 945.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([946.], device='cuda:0')
data.h5py: 946 tensor([[942., 943., 944., 945., 946.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([947.], device='cuda:0')
data.h5py: 947 tensor([[943., 944., 945., 946., 947.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([948.], device='cuda:0')
data.h5py: 948 tensor([[944., 945., 946., 947., 948.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([949.], device='cuda:0')
data.h5py: 949 tensor([[945., 946., 947., 948., 949.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([950.], device='cuda:0')
data.h5py: 950 tensor([[946., 947., 948., 949., 950.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([951.], device='cuda:0')
data.h5py: 951 tensor([[947., 948., 949., 950., 951.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([952.], device='cuda:0')
data.h5py: 952 tensor([[948., 949., 950., 951., 952.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([953.], device='cuda:0')
data.h5py: 953 tensor([[953., 953., 953., 953., 953.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([954.], device='cuda:0')
data.h5py: 954 tensor([[953., 953., 953., 953., 954.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([955.], device='cuda:0')
data.h5py: 955 tensor([[953., 953., 953., 954., 955.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([956.], device='cuda:0')
data.h5py: 956 tensor([[953., 953., 954., 955., 956.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([957.], device='cuda:0')
data.h5py: 957 tensor([[953., 954., 955., 956., 957.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([958.], device='cuda:0')
data.h5py: 958 tensor([[954., 955., 956., 957., 958.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([959.], device='cuda:0')
data.h5py: 959 tensor([[955., 956., 957., 958., 959.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([960.], device='cuda:0')
data.h5py: 960 tensor([[956., 957., 958., 959., 960.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([961.], device='cuda:0')
data.h5py: 961 tensor([[957., 958., 959., 960., 961.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([962.], device='cuda:0')
data.h5py: 962 tensor([[958., 959., 960., 961., 962.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([963.], device='cuda:0')
data.h5py: 963 tensor([[963., 963., 963., 963., 963.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([964.], device='cuda:0')
data.h5py: 964 tensor([[963., 963., 963., 963., 964.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([965.], device='cuda:0')
data.h5py: 965 tensor([[963., 963., 963., 964., 965.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([966.], device='cuda:0')
data.h5py: 966 tensor([[963., 963., 964., 965., 966.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([967.], device='cuda:0')
data.h5py: 967 tensor([[963., 964., 965., 966., 967.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([968.], device='cuda:0')
data.h5py: 968 tensor([[964., 965., 966., 967., 968.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([969.], device='cuda:0')
data.h5py: 969 tensor([[965., 966., 967., 968., 969.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([970.], device='cuda:0')
data.h5py: 970 tensor([[966., 967., 968., 969., 970.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([971.], device='cuda:0')
data.h5py: 971 tensor([[967., 968., 969., 970., 971.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([972.], device='cuda:0')
data.h5py: 972 tensor([[968., 969., 970., 971., 972.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([973.], device='cuda:0')
data.h5py: 973 tensor([[969., 970., 971., 972., 973.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([974.], device='cuda:0')
data.h5py: 974 tensor([[970., 971., 972., 973., 974.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([975.], device='cuda:0')
data.h5py: 975 tensor([[971., 972., 973., 974., 975.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([976.], device='cuda:0')
data.h5py: 976 tensor([[972., 973., 974., 975., 976.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([977.], device='cuda:0')
data.h5py: 977 tensor([[973., 974., 975., 976., 977.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([978.], device='cuda:0')
data.h5py: 978 tensor([[974., 975., 976., 977., 978.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([979.], device='cuda:0')
data.h5py: 979 tensor([[975., 976., 977., 978., 979.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([980.], device='cuda:0')
data.h5py: 980 tensor([[980., 980., 980., 980., 980.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([981.], device='cuda:0')
data.h5py: 981 tensor([[980., 980., 980., 980., 981.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([982.], device='cuda:0')
data.h5py: 982 tensor([[980., 980., 980., 981., 982.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([983.], device='cuda:0')
data.h5py: 983 tensor([[980., 980., 981., 982., 983.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([984.], device='cuda:0')
data.h5py: 984 tensor([[980., 981., 982., 983., 984.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([985.], device='cuda:0')
data.h5py: 985 tensor([[981., 982., 983., 984., 985.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([986.], device='cuda:0')
data.h5py: 986 tensor([[982., 983., 984., 985., 986.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([987.], device='cuda:0')
data.h5py: 987 tensor([[983., 984., 985., 986., 987.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([988.], device='cuda:0')
data.h5py: 988 tensor([[984., 985., 986., 987., 988.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([989.], device='cuda:0')
data.h5py: 989 tensor([[985., 986., 987., 988., 989.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([990.], device='cuda:0')
data.h5py: 990 tensor([[986., 987., 988., 989., 990.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([991.], device='cuda:0')
data.h5py: 991 tensor([[987., 988., 989., 990., 991.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([992.], device='cuda:0')
data.h5py: 992 tensor([[988., 989., 990., 991., 992.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([993.], device='cuda:0')
data.h5py: 993 tensor([[989., 990., 991., 992., 993.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([994.], device='cuda:0')
data.h5py: 994 tensor([[990., 991., 992., 993., 994.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([995.], device='cuda:0')
data.h5py: 995 tensor([[991., 992., 993., 994., 995.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([996.], device='cuda:0')
data.h5py: 996 tensor([[992., 993., 994., 995., 996.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([997.], device='cuda:0')
data.h5py: 997 tensor([[993., 994., 995., 996., 997.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([998.], device='cuda:0')
data.h5py: 998 tensor([[994., 995., 996., 997., 998.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([999.], device='cuda:0')
data.h5py: 999 tensor([[995., 996., 997., 998., 999.]], device='cuda:0') torch.Size([1, 5, 10]) tensor([1000.], device='cuda:0')