Skip to content

modules.conv.AE1d

Class · nn.Module · Source

net = mdnc.modules.conv.AE1d(
    channel, layers,
    kernel_size=3, in_planes=1, out_planes=1
)

This moule is a built-in model for 1D convolutional auto-encoder. The network structure is almost the same as mdnc.modules.conv.UNet1d but all block-level skip connections are removed. Generally, using mdnc.modules.conv.UNet1d should be a better choice.

The network would down-sample and up-sample the input data according to the network depth. The depth is given by the length of the argument layers. The network structure is shown in the following chart:

flowchart TB
    b1["Block 1<br>Stack of layers[0] layers"]
    b2["Block 2<br>Stack of layers[1] layers"]
    bi["Block ...<br>Stack of ... layers"]
    bn["Block n<br>Stack of layers[n-1] layers"]
    u1["Block 2n-1<br>Stack of layers[0] layers"]
    u2["Block 2n-2<br>Stack of layers[1] layers"]
    ui["Block ...<br>Stack of ... layers"]
    b1 -->|down<br>sampling| b2 -->|down<br>sampling| bi -->|down<br>sampling| bn
    bn -->|up<br>sampling| ui -->|up<br>sampling| u2 -->|up<br>sampling| u1
    linkStyle 0,1,2 stroke-width:4px, stroke:#800 ;
    linkStyle 3,4,5 stroke-width:4px, stroke:#080 ;

The argument layers is a sequence of int. For each block \(i\), it contains layers[i-1] repeated modern convolutional layers (see mdnc.modules.conv.ConvModern1d). Each down-sampling or up-sampling is configured by stride=2. The channel number would be doubled in the down-sampling route and reduced to ½ in the up-sampling route.

Arguments

Requries

Argument Type Description
channel int The channel number of the first hidden block (layer). After each down-sampling, the channel number would be doubled. After each up-sampling, the channel number would be reduced to ½.
layers (int,) A sequence of layer numbers for each block. Each number represents the number of convolutional layers of a stage (block). The stage numer, i.e. the depth of the network is the length of this list.
kernel_size int The kernel size of each convolutional layer.
in_planes int The channel number of the input data.
out_planes int The channel number of the output data.

Operators

__call__

y = net(x)

The forward operator implemented by the forward() method. The input is a 1D tensor, and the output is the final output of this network.

Requries

Argument Type Description
x torch.Tensor A 1D tensor, the size should be (B, C, L), where B is the batch size, C is the input channel number, and L is the input data length.

Returns

Argument Description
y A 1D tensor, the size should be (B, C, L), where B is the batch size, C is the output channel number, and L is the input data length.

Properties

nlayers

net.nlayers

The total number of convolutional layers along the depth of the network.

Examples

Example
1
2
3
4
5
import mdnc

net = mdnc.modules.conv.AE1d(64, [2, 2, 3, 3, 3], in_planes=3, out_planes=1)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
mdnc.contribs.torchsummary.summary(net, (3, 128), device='cpu')
The number of convolutional layers along the depth is 25.
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv1d-1              [-1, 64, 128]             960
    InstanceNorm1d-2              [-1, 64, 128]             128
             PReLU-3              [-1, 64, 128]              64
            Conv1d-4              [-1, 64, 128]          12,288
     _ConvModernNd-5              [-1, 64, 128]               0
    InstanceNorm1d-6              [-1, 64, 128]             128
             PReLU-7              [-1, 64, 128]              64
            Conv1d-8               [-1, 64, 64]          12,288
     _ConvModernNd-9               [-1, 64, 64]               0
  _BlockConvStkNd-10               [-1, 64, 64]               0
   InstanceNorm1d-11               [-1, 64, 64]             128
            PReLU-12               [-1, 64, 64]              64
           Conv1d-13              [-1, 128, 64]          24,576
    _ConvModernNd-14              [-1, 128, 64]               0
   InstanceNorm1d-15              [-1, 128, 64]             256
            PReLU-16              [-1, 128, 64]             128
           Conv1d-17              [-1, 128, 32]          49,152
    _ConvModernNd-18              [-1, 128, 32]               0
  _BlockConvStkNd-19              [-1, 128, 32]               0
   InstanceNorm1d-20              [-1, 128, 32]             256
            PReLU-21              [-1, 128, 32]             128
           Conv1d-22              [-1, 256, 32]          98,304
    _ConvModernNd-23              [-1, 256, 32]               0
   InstanceNorm1d-24              [-1, 256, 32]             512
            PReLU-25              [-1, 256, 32]             256
           Conv1d-26              [-1, 256, 32]         196,608
    _ConvModernNd-27              [-1, 256, 32]               0
   InstanceNorm1d-28              [-1, 256, 32]             512
            PReLU-29              [-1, 256, 32]             256
           Conv1d-30              [-1, 256, 16]         196,608
    _ConvModernNd-31              [-1, 256, 16]               0
  _BlockConvStkNd-32              [-1, 256, 16]               0
   InstanceNorm1d-33              [-1, 256, 16]             512
            PReLU-34              [-1, 256, 16]             256
           Conv1d-35              [-1, 512, 16]         393,216
    _ConvModernNd-36              [-1, 512, 16]               0
   InstanceNorm1d-37              [-1, 512, 16]           1,024
            PReLU-38              [-1, 512, 16]             512
           Conv1d-39              [-1, 512, 16]         786,432
    _ConvModernNd-40              [-1, 512, 16]               0
   InstanceNorm1d-41              [-1, 512, 16]           1,024
            PReLU-42              [-1, 512, 16]             512
           Conv1d-43               [-1, 512, 8]         786,432
    _ConvModernNd-44               [-1, 512, 8]               0
  _BlockConvStkNd-45               [-1, 512, 8]               0
   InstanceNorm1d-46               [-1, 512, 8]           1,024
            PReLU-47               [-1, 512, 8]             512
           Conv1d-48              [-1, 1024, 8]       1,572,864
    _ConvModernNd-49              [-1, 1024, 8]               0
   InstanceNorm1d-50              [-1, 1024, 8]           2,048
            PReLU-51              [-1, 1024, 8]           1,024
           Conv1d-52              [-1, 1024, 8]       3,145,728
    _ConvModernNd-53              [-1, 1024, 8]               0
   InstanceNorm1d-54              [-1, 1024, 8]           2,048
            PReLU-55              [-1, 1024, 8]           1,024
         Upsample-56             [-1, 1024, 16]               0
           Conv1d-57              [-1, 512, 16]       1,572,864
    _ConvModernNd-58              [-1, 512, 16]               0
  _BlockConvStkNd-59              [-1, 512, 16]               0
   InstanceNorm1d-60              [-1, 512, 16]           1,024
            PReLU-61              [-1, 512, 16]             512
           Conv1d-62              [-1, 512, 16]         786,432
    _ConvModernNd-63              [-1, 512, 16]               0
   InstanceNorm1d-64              [-1, 512, 16]           1,024
            PReLU-65              [-1, 512, 16]             512
           Conv1d-66              [-1, 512, 16]         786,432
    _ConvModernNd-67              [-1, 512, 16]               0
   InstanceNorm1d-68              [-1, 512, 16]           1,024
            PReLU-69              [-1, 512, 16]             512
         Upsample-70              [-1, 512, 32]               0
           Conv1d-71              [-1, 256, 32]         393,216
    _ConvModernNd-72              [-1, 256, 32]               0
  _BlockConvStkNd-73              [-1, 256, 32]               0
   InstanceNorm1d-74              [-1, 256, 32]             512
            PReLU-75              [-1, 256, 32]             256
           Conv1d-76              [-1, 256, 32]         196,608
    _ConvModernNd-77              [-1, 256, 32]               0
   InstanceNorm1d-78              [-1, 256, 32]             512
            PReLU-79              [-1, 256, 32]             256
           Conv1d-80              [-1, 256, 32]         196,608
    _ConvModernNd-81              [-1, 256, 32]               0
   InstanceNorm1d-82              [-1, 256, 32]             512
            PReLU-83              [-1, 256, 32]             256
         Upsample-84              [-1, 256, 64]               0
           Conv1d-85              [-1, 128, 64]          98,304
    _ConvModernNd-86              [-1, 128, 64]               0
  _BlockConvStkNd-87              [-1, 128, 64]               0
   InstanceNorm1d-88              [-1, 128, 64]             256
            PReLU-89              [-1, 128, 64]             128
           Conv1d-90              [-1, 128, 64]          49,152
    _ConvModernNd-91              [-1, 128, 64]               0
   InstanceNorm1d-92              [-1, 128, 64]             256
            PReLU-93              [-1, 128, 64]             128
         Upsample-94             [-1, 128, 128]               0
           Conv1d-95              [-1, 64, 128]          24,576
    _ConvModernNd-96              [-1, 64, 128]               0
  _BlockConvStkNd-97              [-1, 64, 128]               0
   InstanceNorm1d-98              [-1, 64, 128]             128
            PReLU-99              [-1, 64, 128]              64
          Conv1d-100              [-1, 64, 128]          12,288
   _ConvModernNd-101              [-1, 64, 128]               0
  InstanceNorm1d-102              [-1, 64, 128]             128
           PReLU-103              [-1, 64, 128]              64
          Conv1d-104              [-1, 64, 128]          12,288
   _ConvModernNd-105              [-1, 64, 128]               0
 _BlockConvStkNd-106              [-1, 64, 128]               0
          Conv1d-107               [-1, 3, 128]             963
            AE1d-108               [-1, 3, 128]               0
================================================================
Total params: 11,427,651
Trainable params: 11,427,651
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 6.26
Params size (MB): 43.59
Estimated Total Size (MB): 49.85
----------------------------------------------------------------

Last update: March 14, 2021

Comments