Skip to content

modules.conv.AE3d

Class · nn.Module · Source

net = mdnc.modules.conv.AE3d(
    channel, layers,
    kernel_size=3, in_planes=1, out_planes=1
)

This moule is a built-in model for 3D convolutional auto-encoder. The network structure is almost the same as mdnc.modules.conv.UNet3d but all block-level skip connections are removed. Generally, using mdnc.modules.conv.UNet3d should be a better choice.

The network would down-sample and up-sample the input data according to the network depth. The depth is given by the length of the argument layers. The network structure is shown in the following chart:

flowchart TB
    b1["Block 1<br>Stack of layers[0] layers"]
    b2["Block 2<br>Stack of layers[1] layers"]
    bi["Block ...<br>Stack of ... layers"]
    bn["Block n<br>Stack of layers[n-1] layers"]
    u1["Block 2n-1<br>Stack of layers[0] layers"]
    u2["Block 2n-2<br>Stack of layers[1] layers"]
    ui["Block ...<br>Stack of ... layers"]
    b1 -->|down<br>sampling| b2 -->|down<br>sampling| bi -->|down<br>sampling| bn
    bn -->|up<br>sampling| ui -->|up<br>sampling| u2 -->|up<br>sampling| u1
    linkStyle 0,1,2 stroke-width:4px, stroke:#800 ;
    linkStyle 3,4,5 stroke-width:4px, stroke:#080 ;

The argument layers is a sequence of int. For each block \(i\), it contains layers[i-1] repeated modern convolutional layers (see mdnc.modules.conv.ConvModern3d). Each down-sampling or up-sampling is configured by stride=2. The channel number would be doubled in the down-sampling route and reduced to ½ in the up-sampling route.

Arguments

Requries

Argument Type Description
channel int The channel number of the first hidden block (layer). After each down-sampling, the channel number would be doubled. After each up-sampling, the channel number would be reduced to ½.
layers (int,) A sequence of layer numbers for each block. Each number represents the number of convolutional layers of a stage (block). The stage numer, i.e. the depth of the network is the length of this list.
kernel_size int or
(int, int, int)
The kernel size of each convolutional layer.
in_planes int The channel number of the input data.
out_planes int The channel number of the output data.

Operators

__call__

y = net(x)

The forward operator implemented by the forward() method. The input is a 3D tensor, and the output is the final output of this network.

Requries

Argument Type Description
x torch.Tensor A 3D tensor, the size should be (B, C, L1, L2, L3), where B is the batch size, C is the input channel number, and (L1, L2, L3) is the input data size.

Returns

Argument Description
y A 3D tensor, the size should be (B, C, L1, L2, L3), where B is the batch size, C is the output channel number, and (L1, L2, L3) is the input data size.

Properties

nlayers

net.nlayers

The total number of convolutional layers along the depth of the network.

Examples

Example
1
2
3
4
5
import mdnc

net = mdnc.modules.conv.AE3d(64, [2, 2, 3, 3, 3], in_planes=3, out_planes=1)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
mdnc.contribs.torchsummary.summary(net, (3, 31, 32, 30), device='cpu')
The number of convolutional layers along the depth is 25.
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv3d-1       [-1, 64, 31, 32, 30]          24,000
    InstanceNorm3d-2       [-1, 64, 31, 32, 30]             128
             PReLU-3       [-1, 64, 31, 32, 30]              64
            Conv3d-4       [-1, 64, 31, 32, 30]         110,592
     _ConvModernNd-5       [-1, 64, 31, 32, 30]               0
    InstanceNorm3d-6       [-1, 64, 31, 32, 30]             128
             PReLU-7       [-1, 64, 31, 32, 30]              64
            Conv3d-8       [-1, 64, 16, 16, 15]         110,592
     _ConvModernNd-9       [-1, 64, 16, 16, 15]               0
  _BlockConvStkNd-10       [-1, 64, 16, 16, 15]               0
   InstanceNorm3d-11       [-1, 64, 16, 16, 15]             128
            PReLU-12       [-1, 64, 16, 16, 15]              64
           Conv3d-13      [-1, 128, 16, 16, 15]         221,184
    _ConvModernNd-14      [-1, 128, 16, 16, 15]               0
   InstanceNorm3d-15      [-1, 128, 16, 16, 15]             256
            PReLU-16      [-1, 128, 16, 16, 15]             128
           Conv3d-17         [-1, 128, 8, 8, 8]         442,368
    _ConvModernNd-18         [-1, 128, 8, 8, 8]               0
  _BlockConvStkNd-19         [-1, 128, 8, 8, 8]               0
   InstanceNorm3d-20         [-1, 128, 8, 8, 8]             256
            PReLU-21         [-1, 128, 8, 8, 8]             128
           Conv3d-22         [-1, 256, 8, 8, 8]         884,736
    _ConvModernNd-23         [-1, 256, 8, 8, 8]               0
   InstanceNorm3d-24         [-1, 256, 8, 8, 8]             512
            PReLU-25         [-1, 256, 8, 8, 8]             256
           Conv3d-26         [-1, 256, 8, 8, 8]       1,769,472
    _ConvModernNd-27         [-1, 256, 8, 8, 8]               0
   InstanceNorm3d-28         [-1, 256, 8, 8, 8]             512
            PReLU-29         [-1, 256, 8, 8, 8]             256
           Conv3d-30         [-1, 256, 4, 4, 4]       1,769,472
    _ConvModernNd-31         [-1, 256, 4, 4, 4]               0
  _BlockConvStkNd-32         [-1, 256, 4, 4, 4]               0
   InstanceNorm3d-33         [-1, 256, 4, 4, 4]             512
            PReLU-34         [-1, 256, 4, 4, 4]             256
           Conv3d-35         [-1, 512, 4, 4, 4]       3,538,944
    _ConvModernNd-36         [-1, 512, 4, 4, 4]               0
   InstanceNorm3d-37         [-1, 512, 4, 4, 4]           1,024
            PReLU-38         [-1, 512, 4, 4, 4]             512
           Conv3d-39         [-1, 512, 4, 4, 4]       7,077,888
    _ConvModernNd-40         [-1, 512, 4, 4, 4]               0
   InstanceNorm3d-41         [-1, 512, 4, 4, 4]           1,024
            PReLU-42         [-1, 512, 4, 4, 4]             512
           Conv3d-43         [-1, 512, 2, 2, 2]       7,077,888
    _ConvModernNd-44         [-1, 512, 2, 2, 2]               0
  _BlockConvStkNd-45         [-1, 512, 2, 2, 2]               0
   InstanceNorm3d-46         [-1, 512, 2, 2, 2]           1,024
            PReLU-47         [-1, 512, 2, 2, 2]             512
           Conv3d-48        [-1, 1024, 2, 2, 2]      14,155,776
    _ConvModernNd-49        [-1, 1024, 2, 2, 2]               0
   InstanceNorm3d-50        [-1, 1024, 2, 2, 2]           2,048
            PReLU-51        [-1, 1024, 2, 2, 2]           1,024
           Conv3d-52        [-1, 1024, 2, 2, 2]      28,311,552
    _ConvModernNd-53        [-1, 1024, 2, 2, 2]               0
   InstanceNorm3d-54        [-1, 1024, 2, 2, 2]           2,048
            PReLU-55        [-1, 1024, 2, 2, 2]           1,024
         Upsample-56        [-1, 1024, 4, 4, 4]               0
           Conv3d-57         [-1, 512, 4, 4, 4]      14,155,776
    _ConvModernNd-58         [-1, 512, 4, 4, 4]               0
  _BlockConvStkNd-59         [-1, 512, 4, 4, 4]               0
   InstanceNorm3d-60         [-1, 512, 4, 4, 4]           1,024
            PReLU-61         [-1, 512, 4, 4, 4]             512
           Conv3d-62         [-1, 512, 4, 4, 4]       7,077,888
    _ConvModernNd-63         [-1, 512, 4, 4, 4]               0
   InstanceNorm3d-64         [-1, 512, 4, 4, 4]           1,024
            PReLU-65         [-1, 512, 4, 4, 4]             512
           Conv3d-66         [-1, 512, 4, 4, 4]       7,077,888
    _ConvModernNd-67         [-1, 512, 4, 4, 4]               0
   InstanceNorm3d-68         [-1, 512, 4, 4, 4]           1,024
            PReLU-69         [-1, 512, 4, 4, 4]             512
         Upsample-70         [-1, 512, 8, 8, 8]               0
           Conv3d-71         [-1, 256, 8, 8, 8]       3,538,944
    _ConvModernNd-72         [-1, 256, 8, 8, 8]               0
  _BlockConvStkNd-73         [-1, 256, 8, 8, 8]               0
   InstanceNorm3d-74         [-1, 256, 8, 8, 8]             512
            PReLU-75         [-1, 256, 8, 8, 8]             256
           Conv3d-76         [-1, 256, 8, 8, 8]       1,769,472
    _ConvModernNd-77         [-1, 256, 8, 8, 8]               0
   InstanceNorm3d-78         [-1, 256, 8, 8, 8]             512
            PReLU-79         [-1, 256, 8, 8, 8]             256
           Conv3d-80         [-1, 256, 8, 8, 8]       1,769,472
    _ConvModernNd-81         [-1, 256, 8, 8, 8]               0
   InstanceNorm3d-82         [-1, 256, 8, 8, 8]             512
            PReLU-83         [-1, 256, 8, 8, 8]             256
         Upsample-84      [-1, 256, 16, 16, 16]               0
           Conv3d-85      [-1, 128, 16, 16, 16]         884,736
    _ConvModernNd-86      [-1, 128, 16, 16, 16]               0
  _BlockConvStkNd-87      [-1, 128, 16, 16, 16]               0
   InstanceNorm3d-88      [-1, 128, 16, 16, 15]             256
            PReLU-89      [-1, 128, 16, 16, 15]             128
           Conv3d-90      [-1, 128, 16, 16, 15]         442,368
    _ConvModernNd-91      [-1, 128, 16, 16, 15]               0
   InstanceNorm3d-92      [-1, 128, 16, 16, 15]             256
            PReLU-93      [-1, 128, 16, 16, 15]             128
         Upsample-94      [-1, 128, 32, 32, 30]               0
           Conv3d-95       [-1, 64, 32, 32, 30]         221,184
    _ConvModernNd-96       [-1, 64, 32, 32, 30]               0
  _BlockConvStkNd-97       [-1, 64, 32, 32, 30]               0
   InstanceNorm3d-98       [-1, 64, 31, 32, 30]             128
            PReLU-99       [-1, 64, 31, 32, 30]              64
          Conv3d-100       [-1, 64, 31, 32, 30]         110,592
   _ConvModernNd-101       [-1, 64, 31, 32, 30]               0
  InstanceNorm3d-102       [-1, 64, 31, 32, 30]             128
           PReLU-103       [-1, 64, 31, 32, 30]              64
          Conv3d-104       [-1, 64, 31, 32, 30]         110,592
   _ConvModernNd-105       [-1, 64, 31, 32, 30]               0
 _BlockConvStkNd-106       [-1, 64, 31, 32, 30]               0
          Conv3d-107        [-1, 3, 31, 32, 30]          24,003
            AE3d-108        [-1, 3, 31, 32, 30]               0
================================================================
Total params: 102,699,843
Trainable params: 102,699,843
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.34
Forward/backward pass size (MB): 408.27
Params size (MB): 391.77
Estimated Total Size (MB): 800.38
----------------------------------------------------------------

Last update: March 14, 2021

Comments