Skip to content

modules.conv.ConvModern2d

Class · nn.Module · Source

layer = mdnc.modules.conv.ConvModern2d(
    in_planes, out_planes,
    kernel_size=3, stride=1, padding=1, output_size=None,
    normalizer='pinst', activator='prelu', layer_order='new', scaler='down'
)

The implementation for the 2D modern convolutional layer. It supports both down-sampling mode and up-sampling modes. The modern convolutional layer is a stack of convolution, normalization and activation. Shown in the following chart:

flowchart TB
    conv[Convolution] --> norm[Normalization] --> actv[Activation]

In the following paper, a new op composition order is proposed for building residual block. This idea is may help the performance get improved.

Identity Mappings in Deep Residual Networks

The basic idea of this method is shown in the following diagram:

flowchart TB
    actv[Activation]  --> norm[Normalization] --> conv[Convolution]

This idea is called "pre-activation" in some works. We also support this implementation. By setting the argument layer_order='new', the "pre-activation" method would be used for building the layer.

Arguments

Requries

Argument Type Description
in_planes int The channel number of the input data.
out_planes int The channel number of the output data.
kernel_size int or
(int, int)
The kernel size of this layer.
stride int or
(int, int)
The stride size of this layer. When scaler='down', this argument serves as the down-sampling factor. When scaler='up', this argument serves as the up-sampling factor.
padding int or
(int, int)
The padding size of this layer. The zero padding would be performed on both edges of the input before the convolution.
output_size int or
(int, int)
The size of the output data. This option is only used when scaler='up'. When setting this value, the size of the up-sampling would be given explicitly and the argument stride would not be used.
normalizer str The normalization method, could be:
  • 'batch': Batch normalization.
  • 'inst': Instance normalization.
  • 'pinst': Instance normalization with tunable rescaling parameters.
  • 'null': Without normalization, would falls back to the "convolution + activation" form. In this case, the layer_order='new' would not take effects.
activator str The activation method, could be: 'prelu', 'relu', 'null'.
layer_order str The sub-layer composition order, could be:
  • 'new': normalization + activation + convolution.
  • 'old': convolution + normalization + activation.
scaler str The scaling method, could be:
  • 'down': the argument stride would be used for down-sampling.
  • 'up': the argument stride would be used for up-sampling (equivalent to transposed convolution).

Operators

__call__

y = layer(x)

The forward operator implemented by the forward() method. The input is a 2D tensor, and the output is the final output of this layer.

Requries

Argument Type Description
x torch.Tensor A 2D tensor, the size should be (B, C, L1, L2), where B is the batch size, C is the input channel number, and (L1, L2) is the input data size.

Returns

Argument Description
y A 2D tensor, the size should be (B, C, L1, L2), where B is the batch size, C is the output channel number, and (L1, L2) is the output data size.

Examples

In the first example, we build a modern convolutional layer with ½ down-sampling and same padding.

Example 1
1
2
3
4
import mdnc

layer = mdnc.modules.conv.ConvModern2d(16, 32, kernel_size=3, stride=(1, 2), padding=1, scaler='down')
mdnc.contribs.torchsummary.summary(layer, (16, 4, 255), device='cpu')
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
    InstanceNorm2d-1           [-1, 16, 4, 255]              32
             PReLU-2           [-1, 16, 4, 255]              16
            Conv2d-3           [-1, 32, 4, 128]           4,608
      ConvModern2d-4           [-1, 32, 4, 128]               0
================================================================
Total params: 4,656
Trainable params: 4,656
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.06
Forward/backward pass size (MB): 0.50
Params size (MB): 0.02
Estimated Total Size (MB): 0.58
----------------------------------------------------------------

Note that the output size would be (4, 128) in this example, because the same padding is used for both two axes of the input size. In this case, if we want to make a reverse layer, we could specify the output_size for the up-sampling layer, for example:

Example 2
1
2
3
4
import mdnc

layer = mdnc.modules.conv.ConvModern2d(32, 16, kernel_size=3, output_size=(4, 255), padding=1, scaler='up')
mdnc.contribs.torchsummary.summary(layer, (32, 4, 128), device='cpu')
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
    InstanceNorm2d-1           [-1, 32, 4, 128]              64
             PReLU-2           [-1, 32, 4, 128]              32
          Upsample-3           [-1, 32, 4, 255]               0
            Conv2d-4           [-1, 16, 4, 255]           4,608
      ConvModern2d-5           [-1, 16, 4, 255]               0
================================================================
Total params: 4,704
Trainable params: 4,704
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.06
Forward/backward pass size (MB): 0.75
Params size (MB): 0.02
Estimated Total Size (MB): 0.83
----------------------------------------------------------------

Last update: March 14, 2021

Comments