Skip to content

modules.conv.DecoderNet1d

Class · nn.Module · Source

net = mdnc.modules.conv.DecoderNet1d(
     channel, layers, out_size,
     kernel_size=3, in_length=2, out_planes=1
)

This moule is a built-in model for 1D convolutional decoder network. This network could be used as a part of the auto-encoder, or just a network for up-sampling (or generating) data.

The network would up-sample the input data according to the network depth. The depth is given by the length of the argument layers. The network structure is shown in the following chart:

flowchart TB
    u1["Block 1<br>Stack of layers[0] layers"]
    u2["Block 2<br>Stack of layers[1] layers"]
    ui["Block ...<br>Stack of ... layers"]
    un["Block n<br>Stack of layers[n-1] layers"]
    optional:::blockoptional
    subgraph optional [Optional]
       cin["Conv1d<br>with unsqueeze"]
    end
    u1 -->|up<br>sampling| u2 -->|up<br>sampling| ui -->|up<br>sampling| un
    cin -.-> u1
    linkStyle 0,1,2 stroke-width:4px, stroke:#080 ;
    classDef blockoptional fill:none, stroke-dasharray:10,10, stroke:#9370DB, width:100;

The argument layers is a sequence of int. For each block \(i\), it contains layers[i-1] repeated modern convolutional layers (see mdnc.modules.conv.ConvModern1d). Each up-sampling is configured by stride=2. The channel number would be doubled in the up-sampling route. An optional unsqueezer and convolutional layer could be prepended to the first layer when the argument in_length != None. This optional layer is used for converting the vector features in initial feature maps.

Arguments

Requries

Argument Type Description
channel int The channel number of the first hidden block (layer). After each down-sampling, the channel number would be doubled.
layers (int,) A sequence of layer numbers for each block. Each number represents the number of convolutional layers of a stage (block). The stage numer, i.e. the depth of the network is the length of this list.
out_size int The length of the output data. This argument needs to be specified by users, because the network needs to configure its layers according to the output size.
kernel_size int The kernel size of each convolutional layer.
in_length int The length of the input vector, if not set, the input needs to be feature maps. See the property input_size to check the input data size in this case.
out_planes int The channel number of the output data.

Operators

__call__

y = net(x)

The forward operator implemented by the forward() method. The input data is a tensor with a size determined by configurations. The output is a 1D tensor. The channel number of the output is specified by the argument out_planes.

Requries

Argument Type Description
x torch.Tensor A tensor,
  • When in_length is None: the size should be (B, L), where B is the batch size, and L is in_length.
  • When in_length != None: the size should be (B, C, L), where B is the batch size, C and L are the channel number and the length of the input feature maps (see input_size) respectively.

Returns

Argument Description
y A 1D tensor, the size should be (B, C, L), where B is the batch size, C is the input channel number, and L is the output data size specified by the argument out_size.

Properties

nlayers

net.nlayers

The total number of convolutional layers along the depth of the network. This value would not take the fully-connected layer into consideration.


input_size

net.input_size

The size of the input data size (a tuple). This property is useful when in_length is None. In this case, the input size is determined by the network.

Warning

This size contains the channel number (as the first element), because the input channel number is also determined by network when in_length is None.

Examples

Example 1
1
2
3
4
5
6
import mdnc

net = mdnc.modules.conv.DecoderNet1d(64, [3, 3, 3, 3, 3], in_length=32, out_size=128, out_planes=3)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
print('The input size is {0}.'.format(net.input_size))
mdnc.contribs.torchsummary.summary(net, net.input_size, device='cpu')
The number of convolutional layers along the depth is 18.
The input size is (32,).
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv1d-1              [-1, 1024, 4]         132,096
            Conv1d-2              [-1, 1024, 4]       3,145,728
    InstanceNorm1d-3              [-1, 1024, 4]           2,048
             PReLU-4              [-1, 1024, 4]           1,024
            Conv1d-5               [-1, 512, 4]       1,572,864
     _ConvModernNd-6               [-1, 512, 4]               0
    InstanceNorm1d-7               [-1, 512, 4]           1,024
             PReLU-8               [-1, 512, 4]             512
            Conv1d-9               [-1, 512, 4]         786,432
    _ConvModernNd-10               [-1, 512, 4]               0
   InstanceNorm1d-11               [-1, 512, 4]           1,024
            PReLU-12               [-1, 512, 4]             512
         Upsample-13               [-1, 512, 8]               0
           Conv1d-14               [-1, 512, 8]         786,432
    _ConvModernNd-15               [-1, 512, 8]               0
  _BlockConvStkNd-16               [-1, 512, 8]               0
   InstanceNorm1d-17               [-1, 512, 8]           1,024
            PReLU-18               [-1, 512, 8]             512
           Conv1d-19               [-1, 256, 8]         393,216
    _ConvModernNd-20               [-1, 256, 8]               0
   InstanceNorm1d-21               [-1, 256, 8]             512
            PReLU-22               [-1, 256, 8]             256
           Conv1d-23               [-1, 256, 8]         196,608
    _ConvModernNd-24               [-1, 256, 8]               0
   InstanceNorm1d-25               [-1, 256, 8]             512
            PReLU-26               [-1, 256, 8]             256
         Upsample-27              [-1, 256, 16]               0
           Conv1d-28              [-1, 256, 16]         196,608
    _ConvModernNd-29              [-1, 256, 16]               0
  _BlockConvStkNd-30              [-1, 256, 16]               0
   InstanceNorm1d-31              [-1, 256, 16]             512
            PReLU-32              [-1, 256, 16]             256
           Conv1d-33              [-1, 128, 16]          98,304
    _ConvModernNd-34              [-1, 128, 16]               0
   InstanceNorm1d-35              [-1, 128, 16]             256
            PReLU-36              [-1, 128, 16]             128
           Conv1d-37              [-1, 128, 16]          49,152
    _ConvModernNd-38              [-1, 128, 16]               0
   InstanceNorm1d-39              [-1, 128, 16]             256
            PReLU-40              [-1, 128, 16]             128
         Upsample-41              [-1, 128, 32]               0
           Conv1d-42              [-1, 128, 32]          49,152
    _ConvModernNd-43              [-1, 128, 32]               0
  _BlockConvStkNd-44              [-1, 128, 32]               0
   InstanceNorm1d-45              [-1, 128, 32]             256
            PReLU-46              [-1, 128, 32]             128
           Conv1d-47               [-1, 64, 32]          24,576
    _ConvModernNd-48               [-1, 64, 32]               0
   InstanceNorm1d-49               [-1, 64, 32]             128
            PReLU-50               [-1, 64, 32]              64
           Conv1d-51               [-1, 64, 32]          12,288
    _ConvModernNd-52               [-1, 64, 32]               0
   InstanceNorm1d-53               [-1, 64, 32]             128
            PReLU-54               [-1, 64, 32]              64
         Upsample-55               [-1, 64, 64]               0
           Conv1d-56               [-1, 64, 64]          12,288
    _ConvModernNd-57               [-1, 64, 64]               0
  _BlockConvStkNd-58               [-1, 64, 64]               0
   InstanceNorm1d-59               [-1, 64, 64]             128
            PReLU-60               [-1, 64, 64]              64
           Conv1d-61               [-1, 64, 64]          12,288
    _ConvModernNd-62               [-1, 64, 64]               0
   InstanceNorm1d-63               [-1, 64, 64]             128
            PReLU-64               [-1, 64, 64]              64
           Conv1d-65               [-1, 64, 64]          12,288
    _ConvModernNd-66               [-1, 64, 64]               0
   InstanceNorm1d-67               [-1, 64, 64]             128
            PReLU-68               [-1, 64, 64]              64
         Upsample-69              [-1, 64, 128]               0
           Conv1d-70              [-1, 64, 128]          12,288
    _ConvModernNd-71              [-1, 64, 128]               0
  _BlockConvStkNd-72              [-1, 64, 128]               0
           Conv1d-73               [-1, 3, 128]             963
     DecoderNet1d-74               [-1, 3, 128]               0
================================================================
Total params: 7,505,667
Trainable params: 7,505,667
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 1.88
Params size (MB): 28.63
Estimated Total Size (MB): 30.51
----------------------------------------------------------------
Example 2
1
2
3
4
5
6
import mdnc

net = mdnc.modules.conv.DecoderNet1d(64, [3, 3, 3, 3, 3], in_length=None, out_size=128, out_planes=3)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
print('The input size is {0}.'.format(net.input_size))
mdnc.contribs.torchsummary.summary(net, net.input_size, device='cpu')
The number of convolutional layers along the depth is 17.
The input size is (1024, 4).
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv1d-1              [-1, 1024, 4]       3,145,728
    InstanceNorm1d-2              [-1, 1024, 4]           2,048
             PReLU-3              [-1, 1024, 4]           1,024
            Conv1d-4               [-1, 512, 4]       1,572,864
     _ConvModernNd-5               [-1, 512, 4]               0
    InstanceNorm1d-6               [-1, 512, 4]           1,024
             PReLU-7               [-1, 512, 4]             512
            Conv1d-8               [-1, 512, 4]         786,432
     _ConvModernNd-9               [-1, 512, 4]               0
   InstanceNorm1d-10               [-1, 512, 4]           1,024
            PReLU-11               [-1, 512, 4]             512
         Upsample-12               [-1, 512, 8]               0
           Conv1d-13               [-1, 512, 8]         786,432
    _ConvModernNd-14               [-1, 512, 8]               0
  _BlockConvStkNd-15               [-1, 512, 8]               0
   InstanceNorm1d-16               [-1, 512, 8]           1,024
            PReLU-17               [-1, 512, 8]             512
           Conv1d-18               [-1, 256, 8]         393,216
    _ConvModernNd-19               [-1, 256, 8]               0
   InstanceNorm1d-20               [-1, 256, 8]             512
            PReLU-21               [-1, 256, 8]             256
           Conv1d-22               [-1, 256, 8]         196,608
    _ConvModernNd-23               [-1, 256, 8]               0
   InstanceNorm1d-24               [-1, 256, 8]             512
            PReLU-25               [-1, 256, 8]             256
         Upsample-26              [-1, 256, 16]               0
           Conv1d-27              [-1, 256, 16]         196,608
    _ConvModernNd-28              [-1, 256, 16]               0
  _BlockConvStkNd-29              [-1, 256, 16]               0
   InstanceNorm1d-30              [-1, 256, 16]             512
            PReLU-31              [-1, 256, 16]             256
           Conv1d-32              [-1, 128, 16]          98,304
    _ConvModernNd-33              [-1, 128, 16]               0
   InstanceNorm1d-34              [-1, 128, 16]             256
            PReLU-35              [-1, 128, 16]             128
           Conv1d-36              [-1, 128, 16]          49,152
    _ConvModernNd-37              [-1, 128, 16]               0
   InstanceNorm1d-38              [-1, 128, 16]             256
            PReLU-39              [-1, 128, 16]             128
         Upsample-40              [-1, 128, 32]               0
           Conv1d-41              [-1, 128, 32]          49,152
    _ConvModernNd-42              [-1, 128, 32]               0
  _BlockConvStkNd-43              [-1, 128, 32]               0
   InstanceNorm1d-44              [-1, 128, 32]             256
            PReLU-45              [-1, 128, 32]             128
           Conv1d-46               [-1, 64, 32]          24,576
    _ConvModernNd-47               [-1, 64, 32]               0
   InstanceNorm1d-48               [-1, 64, 32]             128
            PReLU-49               [-1, 64, 32]              64
           Conv1d-50               [-1, 64, 32]          12,288
    _ConvModernNd-51               [-1, 64, 32]               0
   InstanceNorm1d-52               [-1, 64, 32]             128
            PReLU-53               [-1, 64, 32]              64
         Upsample-54               [-1, 64, 64]               0
           Conv1d-55               [-1, 64, 64]          12,288
    _ConvModernNd-56               [-1, 64, 64]               0
  _BlockConvStkNd-57               [-1, 64, 64]               0
   InstanceNorm1d-58               [-1, 64, 64]             128
            PReLU-59               [-1, 64, 64]              64
           Conv1d-60               [-1, 64, 64]          12,288
    _ConvModernNd-61               [-1, 64, 64]               0
   InstanceNorm1d-62               [-1, 64, 64]             128
            PReLU-63               [-1, 64, 64]              64
           Conv1d-64               [-1, 64, 64]          12,288
    _ConvModernNd-65               [-1, 64, 64]               0
   InstanceNorm1d-66               [-1, 64, 64]             128
            PReLU-67               [-1, 64, 64]              64
         Upsample-68              [-1, 64, 128]               0
           Conv1d-69              [-1, 64, 128]          12,288
    _ConvModernNd-70              [-1, 64, 128]               0
  _BlockConvStkNd-71              [-1, 64, 128]               0
           Conv1d-72               [-1, 3, 128]             963
     DecoderNet1d-73               [-1, 3, 128]               0
================================================================
Total params: 7,373,571
Trainable params: 7,373,571
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.02
Forward/backward pass size (MB): 1.85
Params size (MB): 28.13
Estimated Total Size (MB): 29.99
----------------------------------------------------------------

Last update: March 14, 2021

Comments