Skip to content

modules.resnet.AE2d

Class · nn.Module · Source

net = mdnc.modules.resnet.AE2d(
    channel, layers, block='bottleneck',
    kernel_size=3, in_planes=1, out_planes=1
)

This moule is a built-in model for 2D residual auto-encoder. The network structure is almost the same as mdnc.modules.resnet.UNet2d but all block-level skip connections are removed. Generally, using mdnc.modules.resnet.UNet2d should be a better choice.

The network would down-sample and up-sample the input data according to the network depth. The depth is given by the length of the argument layers. The network structure is shown in the following chart:

flowchart TB
    b1["Block 1<br>Stack of layers[0] blocks"]
    b2["Block 2<br>Stack of layers[1] blocks"]
    bi["Block ...<br>Stack of ... blocks"]
    bn["Block n<br>Stack of layers[n-1] blocks"]
    u1["Block 2n-1<br>Stack of layers[0] blocks"]
    u2["Block 2n-2<br>Stack of layers[1] blocks"]
    ui["Block ...<br>Stack of ... blocks"]
    b1 -->|down<br>sampling| b2 -->|down<br>sampling| bi -->|down<br>sampling| bn
    bn -->|up<br>sampling| ui -->|up<br>sampling| u2 -->|up<br>sampling| u1
    linkStyle 0,1,2 stroke-width:4px, stroke:#800 ;
    linkStyle 3,4,5 stroke-width:4px, stroke:#080 ;

The argument layers is a sequence of int. For each block \(i\), it contains layers[i-1] repeated residual blocks (see mdnc.modules.resnet.BlockPlain2d and mdnc.modules.resnet.BlockBottleneck2d). Each down-sampling or up-sampling is configured by stride=2. The channel number would be doubled in the down-sampling route and reduced to ½ in the up-sampling route.

Arguments

Requries

Argument Type Description
channel int The channel number of the first hidden block (layer). After each down-sampling, the channel number would be doubled. After each up-sampling, the channel number would be reduced to ½.
layers (int,) A sequence of layer numbers for each block. Each number represents the number of residual blocks of a stage (block). The stage numer, i.e. the depth of the network is the length of this list.
block str The residual block type, could be:
kernel_size int or
(int, int)
The kernel size of each residual block.
in_planes int The channel number of the input data.
out_planes int The channel number of the output data.

Operators

__call__

y = net(x)

The forward operator implemented by the forward() method. The input is a 2D tensor, and the output is the final output of this network.

Requries

Argument Type Description
x torch.Tensor A 2D tensor, the size should be (B, C, L1, L2), where B is the batch size, C is the input channel number, and (L1, L2) is the input data size.

Returns

Argument Description
y A 2D tensor, the size should be (B, C, L1, L2), where B is the batch size, C is the output channel number, and (L1, L2) is the input data size.

Properties

nlayers

net.nlayers

The total number of convolutional layers along the depth of the network.

Examples

Example
1
2
3
4
5
import mdnc

net = mdnc.modules.resnet.AE2d(64, [2, 2, 2, 2, 3], in_planes=3, out_planes=1)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
mdnc.contribs.torchsummary.summary(net, (3, 64, 63), device='cpu')
The number of convolutional layers along the depth is 59.
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 64, 64, 63]           4,800
    InstanceNorm2d-2           [-1, 64, 64, 63]             128
             PReLU-3           [-1, 64, 64, 63]              64
            Conv2d-4           [-1, 64, 64, 63]           4,096
    InstanceNorm2d-5           [-1, 64, 64, 63]             128
             PReLU-6           [-1, 64, 64, 63]              64
            Conv2d-7           [-1, 64, 64, 63]          36,864
    InstanceNorm2d-8           [-1, 64, 64, 63]             128
             PReLU-9           [-1, 64, 64, 63]              64
           Conv2d-10           [-1, 64, 64, 63]           4,096
_BlockBo...neckNd-11           [-1, 64, 64, 63]               0
   InstanceNorm2d-12           [-1, 64, 64, 63]             128
            PReLU-13           [-1, 64, 64, 63]              64
           Conv2d-14           [-1, 64, 64, 63]           4,096
   InstanceNorm2d-15           [-1, 64, 64, 63]             128
            PReLU-16           [-1, 64, 64, 63]              64
           Conv2d-17           [-1, 64, 32, 32]          36,864
   InstanceNorm2d-18           [-1, 64, 32, 32]             128
            PReLU-19           [-1, 64, 32, 32]              64
           Conv2d-20           [-1, 64, 32, 32]           4,096
           Conv2d-21           [-1, 64, 32, 32]           4,096
   InstanceNorm2d-22           [-1, 64, 32, 32]             128
_BlockBo...neckNd-23           [-1, 64, 32, 32]               0
   _BlockResStkNd-24           [-1, 64, 32, 32]               0
   InstanceNorm2d-25           [-1, 64, 32, 32]             128
            PReLU-26           [-1, 64, 32, 32]              64
           Conv2d-27           [-1, 64, 32, 32]           4,096
   InstanceNorm2d-28           [-1, 64, 32, 32]             128
            PReLU-29           [-1, 64, 32, 32]              64
           Conv2d-30           [-1, 64, 32, 32]          36,864
   InstanceNorm2d-31           [-1, 64, 32, 32]             128
            PReLU-32           [-1, 64, 32, 32]              64
           Conv2d-33          [-1, 128, 32, 32]           8,192
           Conv2d-34          [-1, 128, 32, 32]           8,192
   InstanceNorm2d-35          [-1, 128, 32, 32]             256
_BlockBo...neckNd-36          [-1, 128, 32, 32]               0
   InstanceNorm2d-37          [-1, 128, 32, 32]             256
            PReLU-38          [-1, 128, 32, 32]             128
           Conv2d-39          [-1, 128, 32, 32]          16,384
   InstanceNorm2d-40          [-1, 128, 32, 32]             256
            PReLU-41          [-1, 128, 32, 32]             128
           Conv2d-42          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-43          [-1, 128, 16, 16]             256
            PReLU-44          [-1, 128, 16, 16]             128
           Conv2d-45          [-1, 128, 16, 16]          16,384
           Conv2d-46          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-47          [-1, 128, 16, 16]             256
_BlockBo...neckNd-48          [-1, 128, 16, 16]               0
   _BlockResStkNd-49          [-1, 128, 16, 16]               0
   InstanceNorm2d-50          [-1, 128, 16, 16]             256
            PReLU-51          [-1, 128, 16, 16]             128
           Conv2d-52          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-53          [-1, 128, 16, 16]             256
            PReLU-54          [-1, 128, 16, 16]             128
           Conv2d-55          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-56          [-1, 128, 16, 16]             256
            PReLU-57          [-1, 128, 16, 16]             128
           Conv2d-58          [-1, 256, 16, 16]          32,768
           Conv2d-59          [-1, 256, 16, 16]          32,768
   InstanceNorm2d-60          [-1, 256, 16, 16]             512
_BlockBo...neckNd-61          [-1, 256, 16, 16]               0
   InstanceNorm2d-62          [-1, 256, 16, 16]             512
            PReLU-63          [-1, 256, 16, 16]             256
           Conv2d-64          [-1, 256, 16, 16]          65,536
   InstanceNorm2d-65          [-1, 256, 16, 16]             512
            PReLU-66          [-1, 256, 16, 16]             256
           Conv2d-67            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-68            [-1, 256, 8, 8]             512
            PReLU-69            [-1, 256, 8, 8]             256
           Conv2d-70            [-1, 256, 8, 8]          65,536
           Conv2d-71            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-72            [-1, 256, 8, 8]             512
_BlockBo...neckNd-73            [-1, 256, 8, 8]               0
   _BlockResStkNd-74            [-1, 256, 8, 8]               0
   InstanceNorm2d-75            [-1, 256, 8, 8]             512
            PReLU-76            [-1, 256, 8, 8]             256
           Conv2d-77            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-78            [-1, 256, 8, 8]             512
            PReLU-79            [-1, 256, 8, 8]             256
           Conv2d-80            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-81            [-1, 256, 8, 8]             512
            PReLU-82            [-1, 256, 8, 8]             256
           Conv2d-83            [-1, 512, 8, 8]         131,072
           Conv2d-84            [-1, 512, 8, 8]         131,072
   InstanceNorm2d-85            [-1, 512, 8, 8]           1,024
_BlockBo...neckNd-86            [-1, 512, 8, 8]               0
   InstanceNorm2d-87            [-1, 512, 8, 8]           1,024
            PReLU-88            [-1, 512, 8, 8]             512
           Conv2d-89            [-1, 512, 8, 8]         262,144
   InstanceNorm2d-90            [-1, 512, 8, 8]           1,024
            PReLU-91            [-1, 512, 8, 8]             512
           Conv2d-92            [-1, 512, 4, 4]       2,359,296
   InstanceNorm2d-93            [-1, 512, 4, 4]           1,024
            PReLU-94            [-1, 512, 4, 4]             512
           Conv2d-95            [-1, 512, 4, 4]         262,144
           Conv2d-96            [-1, 512, 4, 4]         262,144
   InstanceNorm2d-97            [-1, 512, 4, 4]           1,024
_BlockBo...neckNd-98            [-1, 512, 4, 4]               0
   _BlockResStkNd-99            [-1, 512, 4, 4]               0
  InstanceNorm2d-100            [-1, 512, 4, 4]           1,024
           PReLU-101            [-1, 512, 4, 4]             512
          Conv2d-102            [-1, 512, 4, 4]         262,144
  InstanceNorm2d-103            [-1, 512, 4, 4]           1,024
           PReLU-104            [-1, 512, 4, 4]             512
          Conv2d-105            [-1, 512, 4, 4]       2,359,296
  InstanceNorm2d-106            [-1, 512, 4, 4]           1,024
           PReLU-107            [-1, 512, 4, 4]             512
          Conv2d-108           [-1, 1024, 4, 4]         524,288
          Conv2d-109           [-1, 1024, 4, 4]         524,288
  InstanceNorm2d-110           [-1, 1024, 4, 4]           2,048
_BlockBo...eckNd-111           [-1, 1024, 4, 4]               0
  InstanceNorm2d-112           [-1, 1024, 4, 4]           2,048
           PReLU-113           [-1, 1024, 4, 4]           1,024
          Conv2d-114           [-1, 1024, 4, 4]       1,048,576
  InstanceNorm2d-115           [-1, 1024, 4, 4]           2,048
           PReLU-116           [-1, 1024, 4, 4]           1,024
          Conv2d-117           [-1, 1024, 4, 4]       9,437,184
  InstanceNorm2d-118           [-1, 1024, 4, 4]           2,048
           PReLU-119           [-1, 1024, 4, 4]           1,024
          Conv2d-120           [-1, 1024, 4, 4]       1,048,576
_BlockBo...eckNd-121           [-1, 1024, 4, 4]               0
  InstanceNorm2d-122           [-1, 1024, 4, 4]           2,048
           PReLU-123           [-1, 1024, 4, 4]           1,024
          Conv2d-124           [-1, 1024, 4, 4]       1,048,576
  InstanceNorm2d-125           [-1, 1024, 4, 4]           2,048
           PReLU-126           [-1, 1024, 4, 4]           1,024
        Upsample-127           [-1, 1024, 8, 8]               0
          Conv2d-128           [-1, 1024, 8, 8]       9,437,184
  InstanceNorm2d-129           [-1, 1024, 8, 8]           2,048
           PReLU-130           [-1, 1024, 8, 8]           1,024
          Conv2d-131            [-1, 512, 8, 8]         524,288
        Upsample-132           [-1, 1024, 8, 8]               0
          Conv2d-133            [-1, 512, 8, 8]         524,288
  InstanceNorm2d-134            [-1, 512, 8, 8]           1,024
_BlockBo...eckNd-135            [-1, 512, 8, 8]               0
  _BlockResStkNd-136            [-1, 512, 8, 8]               0
  InstanceNorm2d-137            [-1, 512, 8, 8]           1,024
           PReLU-138            [-1, 512, 8, 8]             512
          Conv2d-139            [-1, 512, 8, 8]         262,144
  InstanceNorm2d-140            [-1, 512, 8, 8]           1,024
           PReLU-141            [-1, 512, 8, 8]             512
          Conv2d-142            [-1, 512, 8, 8]       2,359,296
  InstanceNorm2d-143            [-1, 512, 8, 8]           1,024
           PReLU-144            [-1, 512, 8, 8]             512
          Conv2d-145            [-1, 512, 8, 8]         262,144
_BlockBo...eckNd-146            [-1, 512, 8, 8]               0
  InstanceNorm2d-147            [-1, 512, 8, 8]           1,024
           PReLU-148            [-1, 512, 8, 8]             512
          Conv2d-149            [-1, 512, 8, 8]         262,144
  InstanceNorm2d-150            [-1, 512, 8, 8]           1,024
           PReLU-151            [-1, 512, 8, 8]             512
        Upsample-152          [-1, 512, 16, 16]               0
          Conv2d-153          [-1, 512, 16, 16]       2,359,296
  InstanceNorm2d-154          [-1, 512, 16, 16]           1,024
           PReLU-155          [-1, 512, 16, 16]             512
          Conv2d-156          [-1, 256, 16, 16]         131,072
        Upsample-157          [-1, 512, 16, 16]               0
          Conv2d-158          [-1, 256, 16, 16]         131,072
  InstanceNorm2d-159          [-1, 256, 16, 16]             512
_BlockBo...eckNd-160          [-1, 256, 16, 16]               0
  _BlockResStkNd-161          [-1, 256, 16, 16]               0
  InstanceNorm2d-162          [-1, 256, 16, 16]             512
           PReLU-163          [-1, 256, 16, 16]             256
          Conv2d-164          [-1, 256, 16, 16]          65,536
  InstanceNorm2d-165          [-1, 256, 16, 16]             512
           PReLU-166          [-1, 256, 16, 16]             256
          Conv2d-167          [-1, 256, 16, 16]         589,824
  InstanceNorm2d-168          [-1, 256, 16, 16]             512
           PReLU-169          [-1, 256, 16, 16]             256
          Conv2d-170          [-1, 256, 16, 16]          65,536
_BlockBo...eckNd-171          [-1, 256, 16, 16]               0
  InstanceNorm2d-172          [-1, 256, 16, 16]             512
           PReLU-173          [-1, 256, 16, 16]             256
          Conv2d-174          [-1, 256, 16, 16]          65,536
  InstanceNorm2d-175          [-1, 256, 16, 16]             512
           PReLU-176          [-1, 256, 16, 16]             256
        Upsample-177          [-1, 256, 32, 32]               0
          Conv2d-178          [-1, 256, 32, 32]         589,824
  InstanceNorm2d-179          [-1, 256, 32, 32]             512
           PReLU-180          [-1, 256, 32, 32]             256
          Conv2d-181          [-1, 128, 32, 32]          32,768
        Upsample-182          [-1, 256, 32, 32]               0
          Conv2d-183          [-1, 128, 32, 32]          32,768
  InstanceNorm2d-184          [-1, 128, 32, 32]             256
_BlockBo...eckNd-185          [-1, 128, 32, 32]               0
  _BlockResStkNd-186          [-1, 128, 32, 32]               0
  InstanceNorm2d-187          [-1, 128, 32, 32]             256
           PReLU-188          [-1, 128, 32, 32]             128
          Conv2d-189          [-1, 128, 32, 32]          16,384
  InstanceNorm2d-190          [-1, 128, 32, 32]             256
           PReLU-191          [-1, 128, 32, 32]             128
          Conv2d-192          [-1, 128, 32, 32]         147,456
  InstanceNorm2d-193          [-1, 128, 32, 32]             256
           PReLU-194          [-1, 128, 32, 32]             128
          Conv2d-195          [-1, 128, 32, 32]          16,384
_BlockBo...eckNd-196          [-1, 128, 32, 32]               0
  InstanceNorm2d-197          [-1, 128, 32, 32]             256
           PReLU-198          [-1, 128, 32, 32]             128
          Conv2d-199          [-1, 128, 32, 32]          16,384
  InstanceNorm2d-200          [-1, 128, 32, 32]             256
           PReLU-201          [-1, 128, 32, 32]             128
        Upsample-202          [-1, 128, 64, 64]               0
          Conv2d-203          [-1, 128, 64, 64]         147,456
  InstanceNorm2d-204          [-1, 128, 64, 64]             256
           PReLU-205          [-1, 128, 64, 64]             128
          Conv2d-206           [-1, 64, 64, 64]           8,192
        Upsample-207          [-1, 128, 64, 64]               0
          Conv2d-208           [-1, 64, 64, 64]           8,192
  InstanceNorm2d-209           [-1, 64, 64, 64]             128
_BlockBo...eckNd-210           [-1, 64, 64, 64]               0
  _BlockResStkNd-211           [-1, 64, 64, 64]               0
  InstanceNorm2d-212           [-1, 64, 64, 63]             128
           PReLU-213           [-1, 64, 64, 63]              64
          Conv2d-214           [-1, 64, 64, 63]           4,096
  InstanceNorm2d-215           [-1, 64, 64, 63]             128
           PReLU-216           [-1, 64, 64, 63]              64
          Conv2d-217           [-1, 64, 64, 63]          36,864
  InstanceNorm2d-218           [-1, 64, 64, 63]             128
           PReLU-219           [-1, 64, 64, 63]              64
          Conv2d-220           [-1, 64, 64, 63]           4,096
_BlockBo...eckNd-221           [-1, 64, 64, 63]               0
  InstanceNorm2d-222           [-1, 64, 64, 63]             128
           PReLU-223           [-1, 64, 64, 63]              64
          Conv2d-224           [-1, 64, 64, 63]           4,096
  InstanceNorm2d-225           [-1, 64, 64, 63]             128
           PReLU-226           [-1, 64, 64, 63]              64
          Conv2d-227           [-1, 64, 64, 63]          36,864
  InstanceNorm2d-228           [-1, 64, 64, 63]             128
           PReLU-229           [-1, 64, 64, 63]              64
          Conv2d-230           [-1, 64, 64, 63]           4,096
_BlockBo...eckNd-231           [-1, 64, 64, 63]               0
  _BlockResStkNd-232           [-1, 64, 64, 63]               0
          Conv2d-233            [-1, 1, 64, 63]           1,601
            AE2d-234            [-1, 1, 64, 63]               0
================================================================
Total params: 39,893,057
Trainable params: 39,893,057
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.05
Forward/backward pass size (MB): 188.53
Params size (MB): 152.18
Estimated Total Size (MB): 340.76
----------------------------------------------------------------

Last update: March 14, 2021

Comments