Skip to content

modules.resnet.DecoderNet2d

Class · nn.Module · Source

net = mdnc.modules.resnet.DecoderNet2d(
     channel, layers, out_size, block='bottleneck',
     kernel_size=3, in_length=2, out_planes=1
)

This moule is a built-in model for 2D residual decoder network. This network could be used as a part of the auto-encoder, or just a network for up-sampling (or generating) data.

The network would up-sample the input data according to the network depth. The depth is given by the length of the argument layers. The network structure is shown in the following chart:

flowchart TB
    u1["Block 1<br>Stack of layers[0] blocks"]
    u2["Block 2<br>Stack of layers[1] blocks"]
    ui["Block ...<br>Stack of ... blocks"]
    un["Block n<br>Stack of layers[n-1] blocks"]
    optional:::blockoptional
    subgraph optional [Optional]
       cin["Conv2d<br>with unsqueeze"]
    end
    u1 -->|up<br>sampling| u2 -->|up<br>sampling| ui -->|up<br>sampling| un
    cin -.-> u1
    linkStyle 0,1,2 stroke-width:4px, stroke:#080 ;
    classDef blockoptional fill:none, stroke-dasharray:10,10, stroke:#9370DB, width:100;

The argument layers is a sequence of int. For each block \(i\), it contains layers[i-1] repeated residual blocks (see mdnc.modules.resnet.BlockPlain2d and mdnc.modules.resnet.BlockBottleneck2d). Each down-sampling or up-sampling is configured by stride=2. The channel number would be doubled in the up-sampling route. An optional unsqueezer and convolutional layer could be prepended to the first layer when the argument in_length != None. This optional layer is used for converting the vector features in initial feature maps.

Arguments

Requries

Argument Type Description
channel int The channel number of the first hidden block (layer). After each down-sampling, the channel number would be doubled.
layers (int,) A sequence of layer numbers for each block. Each number represents the number of residual blocks of a stage (block). The stage numer, i.e. the depth of the network is the length of this list.
out_size int or
(int, int)
The size of the output data. This argument needs to be specified by users, because the network needs to configure its layers according to the output size.
block str The residual block type, could be:
kernel_size int or
(int, int)
The kernel size of each residual block.
in_length int The length of the input vector, if not set, the input needs to be feature maps. See the property input_size to check the input data size in this case.
out_planes int The channel number of the output data.

Operators

__call__

y = net(x)

The forward operator implemented by the forward() method. The input data is a tensor with a size determined by configurations. The output is a 2D tensor. The channel number of the output is specified by the argument out_planes.

Requries

Argument Type Description
x torch.Tensor A tensor,
  • When in_length is None: the size should be (B, L), where B is the batch size, and L is in_length.
  • When in_length != None: the size should be (B, C, L1, L2), where B is the batch size, C and (L1, L2) are the channel number and the size of the input feature maps (see input_size) respectively.

Returns

Argument Description
y A 2D tensor, the size should be (B, C, L1, L2), where B is the batch size, C is the input channel number, and (L1, L2) is the output data size specified by the argument out_size.

Properties

nlayers

net.nlayers

The total number of convolutional layers along the depth of the network. This value would not take the fully-connected layer into consideration.


input_size

net.input_size

The size of the input data size (a tuple). This property is useful when in_length is None. In this case, the input size is determined by the network.

Warning

This size contains the channel number (as the first element), because the input channel number is also determined by network when in_length is None.

Examples

Example 1
1
2
3
4
5
6
import mdnc

net = mdnc.modules.resnet.DecoderNet2d(64, [2, 2, 2, 2, 2], in_length=32, out_size=(64, 63), out_planes=3)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
print('The input size is {0}.'.format(net.input_size))
mdnc.contribs.torchsummary.summary(net, net.input_size, device='cpu')
The number of convolutional layers along the depth is 33.
The input size is (32,).
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 1024, 2, 2]         132,096
            Conv2d-2           [-1, 1024, 2, 2]       9,437,184
    InstanceNorm2d-3           [-1, 1024, 2, 2]           2,048
             PReLU-4           [-1, 1024, 2, 2]           1,024
            Conv2d-5           [-1, 1024, 2, 2]       1,048,576
    InstanceNorm2d-6           [-1, 1024, 2, 2]           2,048
             PReLU-7           [-1, 1024, 2, 2]           1,024
            Conv2d-8           [-1, 1024, 2, 2]       9,437,184
    InstanceNorm2d-9           [-1, 1024, 2, 2]           2,048
            PReLU-10           [-1, 1024, 2, 2]           1,024
           Conv2d-11            [-1, 512, 2, 2]         524,288
           Conv2d-12            [-1, 512, 2, 2]         524,288
   InstanceNorm2d-13            [-1, 512, 2, 2]           1,024
_BlockBo...neckNd-14            [-1, 512, 2, 2]               0
   InstanceNorm2d-15            [-1, 512, 2, 2]           1,024
            PReLU-16            [-1, 512, 2, 2]             512
           Conv2d-17            [-1, 512, 2, 2]         262,144
   InstanceNorm2d-18            [-1, 512, 2, 2]           1,024
            PReLU-19            [-1, 512, 2, 2]             512
         Upsample-20            [-1, 512, 4, 4]               0
           Conv2d-21            [-1, 512, 4, 4]       2,359,296
   InstanceNorm2d-22            [-1, 512, 4, 4]           1,024
            PReLU-23            [-1, 512, 4, 4]             512
           Conv2d-24            [-1, 512, 4, 4]         262,144
         Upsample-25            [-1, 512, 4, 4]               0
           Conv2d-26            [-1, 512, 4, 4]         262,144
   InstanceNorm2d-27            [-1, 512, 4, 4]           1,024
_BlockBo...neckNd-28            [-1, 512, 4, 4]               0
   _BlockResStkNd-29            [-1, 512, 4, 4]               0
   InstanceNorm2d-30            [-1, 512, 4, 4]           1,024
            PReLU-31            [-1, 512, 4, 4]             512
           Conv2d-32            [-1, 512, 4, 4]         262,144
   InstanceNorm2d-33            [-1, 512, 4, 4]           1,024
            PReLU-34            [-1, 512, 4, 4]             512
           Conv2d-35            [-1, 512, 4, 4]       2,359,296
   InstanceNorm2d-36            [-1, 512, 4, 4]           1,024
            PReLU-37            [-1, 512, 4, 4]             512
           Conv2d-38            [-1, 256, 4, 4]         131,072
           Conv2d-39            [-1, 256, 4, 4]         131,072
   InstanceNorm2d-40            [-1, 256, 4, 4]             512
_BlockBo...neckNd-41            [-1, 256, 4, 4]               0
   InstanceNorm2d-42            [-1, 256, 4, 4]             512
            PReLU-43            [-1, 256, 4, 4]             256
           Conv2d-44            [-1, 256, 4, 4]          65,536
   InstanceNorm2d-45            [-1, 256, 4, 4]             512
            PReLU-46            [-1, 256, 4, 4]             256
         Upsample-47            [-1, 256, 8, 8]               0
           Conv2d-48            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-49            [-1, 256, 8, 8]             512
            PReLU-50            [-1, 256, 8, 8]             256
           Conv2d-51            [-1, 256, 8, 8]          65,536
         Upsample-52            [-1, 256, 8, 8]               0
           Conv2d-53            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-54            [-1, 256, 8, 8]             512
_BlockBo...neckNd-55            [-1, 256, 8, 8]               0
   _BlockResStkNd-56            [-1, 256, 8, 8]               0
   InstanceNorm2d-57            [-1, 256, 8, 8]             512
            PReLU-58            [-1, 256, 8, 8]             256
           Conv2d-59            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-60            [-1, 256, 8, 8]             512
            PReLU-61            [-1, 256, 8, 8]             256
           Conv2d-62            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-63            [-1, 256, 8, 8]             512
            PReLU-64            [-1, 256, 8, 8]             256
           Conv2d-65            [-1, 128, 8, 8]          32,768
           Conv2d-66            [-1, 128, 8, 8]          32,768
   InstanceNorm2d-67            [-1, 128, 8, 8]             256
_BlockBo...neckNd-68            [-1, 128, 8, 8]               0
   InstanceNorm2d-69            [-1, 128, 8, 8]             256
            PReLU-70            [-1, 128, 8, 8]             128
           Conv2d-71            [-1, 128, 8, 8]          16,384
   InstanceNorm2d-72            [-1, 128, 8, 8]             256
            PReLU-73            [-1, 128, 8, 8]             128
         Upsample-74          [-1, 128, 16, 16]               0
           Conv2d-75          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-76          [-1, 128, 16, 16]             256
            PReLU-77          [-1, 128, 16, 16]             128
           Conv2d-78          [-1, 128, 16, 16]          16,384
         Upsample-79          [-1, 128, 16, 16]               0
           Conv2d-80          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-81          [-1, 128, 16, 16]             256
_BlockBo...neckNd-82          [-1, 128, 16, 16]               0
   _BlockResStkNd-83          [-1, 128, 16, 16]               0
   InstanceNorm2d-84          [-1, 128, 16, 16]             256
            PReLU-85          [-1, 128, 16, 16]             128
           Conv2d-86          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-87          [-1, 128, 16, 16]             256
            PReLU-88          [-1, 128, 16, 16]             128
           Conv2d-89          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-90          [-1, 128, 16, 16]             256
            PReLU-91          [-1, 128, 16, 16]             128
           Conv2d-92           [-1, 64, 16, 16]           8,192
           Conv2d-93           [-1, 64, 16, 16]           8,192
   InstanceNorm2d-94           [-1, 64, 16, 16]             128
_BlockBo...neckNd-95           [-1, 64, 16, 16]               0
   InstanceNorm2d-96           [-1, 64, 16, 16]             128
            PReLU-97           [-1, 64, 16, 16]              64
           Conv2d-98           [-1, 64, 16, 16]           4,096
   InstanceNorm2d-99           [-1, 64, 16, 16]             128
           PReLU-100           [-1, 64, 16, 16]              64
        Upsample-101           [-1, 64, 32, 32]               0
          Conv2d-102           [-1, 64, 32, 32]          36,864
  InstanceNorm2d-103           [-1, 64, 32, 32]             128
           PReLU-104           [-1, 64, 32, 32]              64
          Conv2d-105           [-1, 64, 32, 32]           4,096
        Upsample-106           [-1, 64, 32, 32]               0
          Conv2d-107           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-108           [-1, 64, 32, 32]             128
_BlockBo...eckNd-109           [-1, 64, 32, 32]               0
  _BlockResStkNd-110           [-1, 64, 32, 32]               0
  InstanceNorm2d-111           [-1, 64, 32, 32]             128
           PReLU-112           [-1, 64, 32, 32]              64
          Conv2d-113           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-114           [-1, 64, 32, 32]             128
           PReLU-115           [-1, 64, 32, 32]              64
          Conv2d-116           [-1, 64, 32, 32]          36,864
  InstanceNorm2d-117           [-1, 64, 32, 32]             128
           PReLU-118           [-1, 64, 32, 32]              64
          Conv2d-119           [-1, 64, 32, 32]           4,096
_BlockBo...eckNd-120           [-1, 64, 32, 32]               0
  InstanceNorm2d-121           [-1, 64, 32, 32]             128
           PReLU-122           [-1, 64, 32, 32]              64
          Conv2d-123           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-124           [-1, 64, 32, 32]             128
           PReLU-125           [-1, 64, 32, 32]              64
        Upsample-126           [-1, 64, 64, 64]               0
          Conv2d-127           [-1, 64, 64, 64]          36,864
  InstanceNorm2d-128           [-1, 64, 64, 64]             128
           PReLU-129           [-1, 64, 64, 64]              64
          Conv2d-130           [-1, 64, 64, 64]           4,096
        Upsample-131           [-1, 64, 64, 64]               0
          Conv2d-132           [-1, 64, 64, 64]           4,096
  InstanceNorm2d-133           [-1, 64, 64, 64]             128
_BlockBo...eckNd-134           [-1, 64, 64, 64]               0
  _BlockResStkNd-135           [-1, 64, 64, 64]               0
          Conv2d-136            [-1, 3, 64, 63]           4,803
    DecoderNet2d-137            [-1, 3, 64, 63]               0
================================================================
Total params: 29,196,291
Trainable params: 29,196,291
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 42.98
Params size (MB): 111.38
Estimated Total Size (MB): 154.36
----------------------------------------------------------------
Example 2
1
2
3
4
5
6
import mdnc

net = mdnc.modules.resnet.DecoderNet2d(64, [2, 2, 2, 2, 2], in_length=None, out_size=(64, 63), out_planes=3)
print('The number of convolutional layers along the depth is {0}.'.format(net.nlayers))
print('The input size is {0}.'.format(net.input_size))
mdnc.contribs.torchsummary.summary(net, net.input_size, device='cpu')
The number of convolutional layers along the depth is 32.
The input size is (1024, 2, 2).
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1           [-1, 1024, 2, 2]       9,437,184
    InstanceNorm2d-2           [-1, 1024, 2, 2]           2,048
             PReLU-3           [-1, 1024, 2, 2]           1,024
            Conv2d-4           [-1, 1024, 2, 2]       1,048,576
    InstanceNorm2d-5           [-1, 1024, 2, 2]           2,048
             PReLU-6           [-1, 1024, 2, 2]           1,024
            Conv2d-7           [-1, 1024, 2, 2]       9,437,184
    InstanceNorm2d-8           [-1, 1024, 2, 2]           2,048
             PReLU-9           [-1, 1024, 2, 2]           1,024
           Conv2d-10            [-1, 512, 2, 2]         524,288
           Conv2d-11            [-1, 512, 2, 2]         524,288
   InstanceNorm2d-12            [-1, 512, 2, 2]           1,024
_BlockBo...neckNd-13            [-1, 512, 2, 2]               0
   InstanceNorm2d-14            [-1, 512, 2, 2]           1,024
            PReLU-15            [-1, 512, 2, 2]             512
           Conv2d-16            [-1, 512, 2, 2]         262,144
   InstanceNorm2d-17            [-1, 512, 2, 2]           1,024
            PReLU-18            [-1, 512, 2, 2]             512
         Upsample-19            [-1, 512, 4, 4]               0
           Conv2d-20            [-1, 512, 4, 4]       2,359,296
   InstanceNorm2d-21            [-1, 512, 4, 4]           1,024
            PReLU-22            [-1, 512, 4, 4]             512
           Conv2d-23            [-1, 512, 4, 4]         262,144
         Upsample-24            [-1, 512, 4, 4]               0
           Conv2d-25            [-1, 512, 4, 4]         262,144
   InstanceNorm2d-26            [-1, 512, 4, 4]           1,024
_BlockBo...neckNd-27            [-1, 512, 4, 4]               0
   _BlockResStkNd-28            [-1, 512, 4, 4]               0
   InstanceNorm2d-29            [-1, 512, 4, 4]           1,024
            PReLU-30            [-1, 512, 4, 4]             512
           Conv2d-31            [-1, 512, 4, 4]         262,144
   InstanceNorm2d-32            [-1, 512, 4, 4]           1,024
            PReLU-33            [-1, 512, 4, 4]             512
           Conv2d-34            [-1, 512, 4, 4]       2,359,296
   InstanceNorm2d-35            [-1, 512, 4, 4]           1,024
            PReLU-36            [-1, 512, 4, 4]             512
           Conv2d-37            [-1, 256, 4, 4]         131,072
           Conv2d-38            [-1, 256, 4, 4]         131,072
   InstanceNorm2d-39            [-1, 256, 4, 4]             512
_BlockBo...neckNd-40            [-1, 256, 4, 4]               0
   InstanceNorm2d-41            [-1, 256, 4, 4]             512
            PReLU-42            [-1, 256, 4, 4]             256
           Conv2d-43            [-1, 256, 4, 4]          65,536
   InstanceNorm2d-44            [-1, 256, 4, 4]             512
            PReLU-45            [-1, 256, 4, 4]             256
         Upsample-46            [-1, 256, 8, 8]               0
           Conv2d-47            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-48            [-1, 256, 8, 8]             512
            PReLU-49            [-1, 256, 8, 8]             256
           Conv2d-50            [-1, 256, 8, 8]          65,536
         Upsample-51            [-1, 256, 8, 8]               0
           Conv2d-52            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-53            [-1, 256, 8, 8]             512
_BlockBo...neckNd-54            [-1, 256, 8, 8]               0
   _BlockResStkNd-55            [-1, 256, 8, 8]               0
   InstanceNorm2d-56            [-1, 256, 8, 8]             512
            PReLU-57            [-1, 256, 8, 8]             256
           Conv2d-58            [-1, 256, 8, 8]          65,536
   InstanceNorm2d-59            [-1, 256, 8, 8]             512
            PReLU-60            [-1, 256, 8, 8]             256
           Conv2d-61            [-1, 256, 8, 8]         589,824
   InstanceNorm2d-62            [-1, 256, 8, 8]             512
            PReLU-63            [-1, 256, 8, 8]             256
           Conv2d-64            [-1, 128, 8, 8]          32,768
           Conv2d-65            [-1, 128, 8, 8]          32,768
   InstanceNorm2d-66            [-1, 128, 8, 8]             256
_BlockBo...neckNd-67            [-1, 128, 8, 8]               0
   InstanceNorm2d-68            [-1, 128, 8, 8]             256
            PReLU-69            [-1, 128, 8, 8]             128
           Conv2d-70            [-1, 128, 8, 8]          16,384
   InstanceNorm2d-71            [-1, 128, 8, 8]             256
            PReLU-72            [-1, 128, 8, 8]             128
         Upsample-73          [-1, 128, 16, 16]               0
           Conv2d-74          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-75          [-1, 128, 16, 16]             256
            PReLU-76          [-1, 128, 16, 16]             128
           Conv2d-77          [-1, 128, 16, 16]          16,384
         Upsample-78          [-1, 128, 16, 16]               0
           Conv2d-79          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-80          [-1, 128, 16, 16]             256
_BlockBo...neckNd-81          [-1, 128, 16, 16]               0
   _BlockResStkNd-82          [-1, 128, 16, 16]               0
   InstanceNorm2d-83          [-1, 128, 16, 16]             256
            PReLU-84          [-1, 128, 16, 16]             128
           Conv2d-85          [-1, 128, 16, 16]          16,384
   InstanceNorm2d-86          [-1, 128, 16, 16]             256
            PReLU-87          [-1, 128, 16, 16]             128
           Conv2d-88          [-1, 128, 16, 16]         147,456
   InstanceNorm2d-89          [-1, 128, 16, 16]             256
            PReLU-90          [-1, 128, 16, 16]             128
           Conv2d-91           [-1, 64, 16, 16]           8,192
           Conv2d-92           [-1, 64, 16, 16]           8,192
   InstanceNorm2d-93           [-1, 64, 16, 16]             128
_BlockBo...neckNd-94           [-1, 64, 16, 16]               0
   InstanceNorm2d-95           [-1, 64, 16, 16]             128
            PReLU-96           [-1, 64, 16, 16]              64
           Conv2d-97           [-1, 64, 16, 16]           4,096
   InstanceNorm2d-98           [-1, 64, 16, 16]             128
            PReLU-99           [-1, 64, 16, 16]              64
        Upsample-100           [-1, 64, 32, 32]               0
          Conv2d-101           [-1, 64, 32, 32]          36,864
  InstanceNorm2d-102           [-1, 64, 32, 32]             128
           PReLU-103           [-1, 64, 32, 32]              64
          Conv2d-104           [-1, 64, 32, 32]           4,096
        Upsample-105           [-1, 64, 32, 32]               0
          Conv2d-106           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-107           [-1, 64, 32, 32]             128
_BlockBo...eckNd-108           [-1, 64, 32, 32]               0
  _BlockResStkNd-109           [-1, 64, 32, 32]               0
  InstanceNorm2d-110           [-1, 64, 32, 32]             128
           PReLU-111           [-1, 64, 32, 32]              64
          Conv2d-112           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-113           [-1, 64, 32, 32]             128
           PReLU-114           [-1, 64, 32, 32]              64
          Conv2d-115           [-1, 64, 32, 32]          36,864
  InstanceNorm2d-116           [-1, 64, 32, 32]             128
           PReLU-117           [-1, 64, 32, 32]              64
          Conv2d-118           [-1, 64, 32, 32]           4,096
_BlockBo...eckNd-119           [-1, 64, 32, 32]               0
  InstanceNorm2d-120           [-1, 64, 32, 32]             128
           PReLU-121           [-1, 64, 32, 32]              64
          Conv2d-122           [-1, 64, 32, 32]           4,096
  InstanceNorm2d-123           [-1, 64, 32, 32]             128
           PReLU-124           [-1, 64, 32, 32]              64
        Upsample-125           [-1, 64, 64, 64]               0
          Conv2d-126           [-1, 64, 64, 64]          36,864
  InstanceNorm2d-127           [-1, 64, 64, 64]             128
           PReLU-128           [-1, 64, 64, 64]              64
          Conv2d-129           [-1, 64, 64, 64]           4,096
        Upsample-130           [-1, 64, 64, 64]               0
          Conv2d-131           [-1, 64, 64, 64]           4,096
  InstanceNorm2d-132           [-1, 64, 64, 64]             128
_BlockBo...eckNd-133           [-1, 64, 64, 64]               0
  _BlockResStkNd-134           [-1, 64, 64, 64]               0
          Conv2d-135            [-1, 3, 64, 63]           4,803
    DecoderNet2d-136            [-1, 3, 64, 63]               0
================================================================
Total params: 29,064,195
Trainable params: 29,064,195
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.02
Forward/backward pass size (MB): 42.95
Params size (MB): 110.87
Estimated Total Size (MB): 153.84
----------------------------------------------------------------

Last update: March 14, 2021

Comments