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Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis [1]

68-Point 
Landmark Detection

3D Face Model

β

Simulated Profile Face

Simulator

Face RoI
Extraction

Generator

Conv 64×7×7
ReLU & BN

Input 
224×224×3

++ …

Residual Block * 10 Conv 3×1×1
Output

224×224×3

Discriminator

Lip

- Lpp

Conv 3×3×3
ReLU

…

…

Real

Synthetic
- Ladv

Transition Down FC 
784

Transition Up Conv 3×1×1
ReLU

Agent 1

Agent 2

Figure 1: Dual-Agent GANs architecture.

Using a 3D model to transform a face into the side view.
Use GAN to compensate the blurred details of the side view
(synthesis) faces.
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Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function
Minimize the discriminator loss LDϕ and generator loss LGϕ
alternatively.

LDϕ = Ladv +λ1Lip,

LGϕ =
(
−Ladv +λ1Lip

)
+λ2Lpp.

(1)

The adversarial loss
The adversarial loss (Wasserstein distance [2]) computes the difference
between the distributions of real faces and synthesis faces.

Ladv = ∑
j
|yj −Dϕ (yj)|−kt ∑

i
|x̃i −Dϕ (x̃i)|,

kt+1 = kt +α

(
γ ∑

j
|yj −Dϕ (yj)|−∑

i
|x̃i −Dϕ (x̃i)|

)
.

(2)
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Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function
Minimize the discriminator loss LDϕ and generator loss LGϕ
alternatively.

LDϕ = Ladv +λ1Lip,

LGϕ =
(
−Ladv +λ1Lip

)
+λ2Lpp.

(1)

The identity loss
The identity loss preserves the identity of the same face.

Lip =
1
N ∑

j
−(Yj log(Dϕ (yj))+(1−Yj) log(1−Dϕ (yj)))

+
1
N ∑

i
−(Yi log(Dϕ (x̃i))+(1−Yi) log(1−Dϕ (x̃i))).

(2)

May 18 - 5 - University of Houston



Dual-Agent
GANs
Theory

Results

Transferable
Learning

Clustering
with deep
learning

De-animation

Reference

Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function
Minimize the discriminator loss LDϕ and generator loss LGϕ
alternatively.

LDϕ = Ladv +λ1Lip,

LGϕ =
(
−Ladv +λ1Lip

)
+λ2Lpp.

(1)

The pixel-wise loss
The pixel-wise loss preserves the shape from the original
synthesis face.

Lpp = ∑
j
|xi − x̃i |,

x̃i = Gϕ (x).
(2)
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Dual-Agent GANs
Results
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Figure 2: Quality of refined results w.r.t. the network convergence
measurement.
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Results
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(a) Refined results of DA-GAN.
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(b) Feature space of real faces and DA-GAN synthetic faces.

Figure 2: Qualitative analysis of DA-GAN.
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Transferable Learning
Label Efficient Learning of Transferable Representations across
Domains and Tasks [3]
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Figure 3: Transferable Learning architecture.

Use a multi-layer domain discriminator to make the
distribution of unsupervised learning branch coherent to
supervised one.
Use a similarity function to transform the label in source
domain into that in target domain.
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Transferable Learning
Label Efficient Learning of Transferable Representations across
Domains and Tasks

The whole loss function

L = Lsup +αLDT +βLST . (3)

The supervised learning loss
The supervised learning loss which is from the target domain is
defined in the most traditional way.

Lsup = EX T , Y T

(
E t(xt)−yt

)
. (4)
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Transferable Learning
Label Efficient Learning of Transferable Representations across
Domains and Tasks

The whole loss function

L = Lsup +αLDT +βLST . (3)

The domain discriminative loss
The domain discriminative loss is comprised by the logarithmic
differences from losses in source and target domains.

LDT =−EX S

(
log(ds

l )
)
−E

X T̂

(
log(1−dt̃

l )
)

−EX S

(
log(1−ds

l )
)
−E

X T̂

(
log(dt̃

l )
)
.

(4)
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Transferable Learning
Label Efficient Learning of Transferable Representations across
Domains and Tasks

The whole loss function

L = Lsup +αLDT +βLST . (3)

The semantic transfer loss
The semantic transfer loss is based on calculating the similarities
between samples from different domains.

LST = LST

(
X T̃ , X S

)
+LST , sup

(
X T

)
+LST , unsup

(
X T̃ , X T

)
.

(4)
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The semantic transfer loss
The semantic transfer loss is based on calculating the similarities
between samples from different domains.

LST = LST

(
X T̃ , X S

)
+LST , sup

(
X T

)
+LST , unsup

(
X T̃ , X T

)
.

(3)

The semantic transfer loss (cross domain)
Use similarity to calculate the cross domain entropy between the
source and the unsupervised target.

LST

(
X T̃ , X S

)
= E

X T̃

(
H
(σ

τ
vs(x̃t)

))
,

[vs(x̃t)]i = ψ(x̃t , xs
i ).

(4)
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The semantic transfer loss
The semantic transfer loss is based on calculating the similarities
between samples from different domains.

LST = LST

(
X T̃ , X S

)
+LST , sup

(
X T

)
+LST , unsup

(
X T̃ , X T

)
.

(3)

The semantic transfer loss (supervised)
Define the centroid of each class as cT

i , then we have.

LST , sup

(
X T

)
=−EX t

(
log
(
softmax

(
vt(xt)

)))
,

[vt(xt)]i = ψ
(

xt , cT
i

)
.

(4)

May 18 - 9 - University of Houston



Dual-Agent
GANs

Transferable
Learning
Theory

Results

Clustering
with deep
learning

De-animation

Reference

Transferable Learning
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The semantic transfer loss
The semantic transfer loss is based on calculating the similarities
between samples from different domains.

LST = LST

(
X T̃ , X S

)
+LST , sup

(
X T

)
+LST , unsup

(
X T̃ , X T

)
.

(3)

The semantic transfer loss (unsupervised)
Use similarity to calculate the cross domain entropy between
unsupervised loss and supervised one.

LST , unsup

(
X T̃ , X T

)
= E

X T̃

(
H
(σ

τ
vt(x̃t)

))
,

[vt(x̃t)]i = ψ
(

x̃t , cT
i

)
.

(4)
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Results

Figure 4: Transfer the learned representation on SVHN digits 0-4
(left) to MNIST digits 5-9 (right).

Table 1: Qualitative analysis of transfered learning model, where
k is the number of used labels.

Method k=2 k=3 k=4 k=5
Target only 0.642 ± 0.026 0.771 ± 0.015 0.801 ± 0.010 0.840 ± 0.013
Fine-tune 0.612 ± 0.020 0.779 ± 0.018 0.802 ± 0.016 0.830 ± 0.011

Matching nets 0.469 ± 0.019 0.455 ± 0.014 0.566 ± 0.013 0.513 ± 0.023
Fine-tuned matching nets 0.645 ± 0.019 0.755 ± 0.024 0.793 ± 0.013 0.827 ± 0.011

Ours: fine-tune + adv. 0.702 ± 0.020 0.800 ± 0.013 0.804 ± 0.014 0.831 ± 0.013
Ours: full model (γ = 0.1) 0.917 ± 0.007 0.936 ± 0.006 0.942 ± 0.006 0.950 ± 0.004
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Clustering with deep learning
Deep Subspace Clustering Networks [4]

Figure 5: Deep Subspace Clustering Networks’ architecture.

The basic structure is autoencoder.
Insert the self-expressive (SE) problem between the
encoder and decoder.
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Clustering with deep learning
Deep Subspace Clustering Networks

The whole loss function
Minimize the combined loss of autoencoder’s and SE’s.

L =
1
2
∥X−D(E(X))∥2

F +λ1∥C∥p +
λ2

2
∥E(X)−E(X)C∥2

F ,

s.t. diag(C) = 0.
(5)

Traditional SE problem
Assuming that we have N samples with a length of L, then
all samples comprise a matrix X with a size of L×N,

min
C

∥C∥p +
λ
2
∥X−XC∥2

F ,

s.t. diag(C) = 0,
(6)
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Figure 6: An example of clustering by using affinity matrix.
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Figure 6: Using the middle part of the network, i.e. the SE model,
we could construct the affinity matrix for clustering.
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De-animation
Learning Physical Intuition of Block Towers by Example [6]

Figure 7: The PhysNet architecture.

This network is adapted from DeepMask [5]. The input is the
whole image rather than a local patch.
Use multiple kernels to produce multiple frames.
Replace the score value with the prediction value.
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De-animation
Learning to See Physics via Visual De-animation [7]

(e) Output(a) Input

(II) Physics engine (simulation)

(III) Graphics engine (rendering)

(b) Physical world
representation

(c) Appearance cues

Object 
proposal

Object 
proposal

Physical 
object state

Physical 
object state

NMS

(I) Perception module

(d) Likelihood

Figure 8: The visual de-animation architecture.

An autoencoder-lite structure. While the decoder is a
physical model (from physical states to objects) and the
encoder is CNN (from objects to physical states).
The decoder, i.e. the physical engine could be differentiable
or not.
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Video

VDA
(ours)

PhysNet

Video

VDA
(ours)

PhysNet

(a) Our reconstruction and prediction results given a single
frame (marked in red). From top to bottom: ground truth,
our results, results from Lerer et al. [2016].

Methods # Blocks Mean
2 3 4

Chance 50 50 50 50
Humans 67 62 62 64

PhysNet 66 66 73 68
GoogLeNet 70 70 70 70

VDA (init) 73 74 72 73
VDA (joint) 75 76 73 75
VDA (full) 76 76 74 75

(b) Accuracy (%) of stability prediction on the
blocks dataset

Methods 2 3 4 Mean

PhysNet 56 68 70 65
GoogLeNet 70 67 71 69

VDA (init) 74 74 67 72
VDA (joint) 75 77 70 74
VDA (full) 76 76 72 75

(c) Accuracy (%) of stability prediction when
trained on synthetic towers of 2 and 4 blocks, and
tested on all block tower sizes.

Figure 9: Compare the performances of PhysNet and VDA.
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