Weekly Report I for Laboratory Research

University of Houston

May 18, 2018

Outline

Dual-Agent GANs Theory Results

Clustering with deep learning

Reference

Outline

4 De-animation

- Theory
- **•** Results

5 Reference

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis [1]

Theory

Results Transferable Learning Clustering with deep learning

De-animation

Reference

Simulator 19 $\frac{\partial^2}{\partial t^2}$ $\frac{\tilde{V}(n)}{\tilde{V}(n)}$ β Face RoI 68-Point Simulated Profile Face Extraction Landmark Detection Generator 3 - Lpp 19 θ . \mathbf{w} , θ **Residual Block * 10** Conv $3 \times 1 \times 1$ Output $224 \times 224 \times 3$ Input 224[×]224×³ Conv 64×7×⁷ ReLU & BN Discriminator Lip … Real Agent 1 … Synthetic - Ladv Agent 2 $Conv3X3X3$ Transition Up Conv 3×1×¹ ReLU Transition Down FC ReLU 784

3D Face Model

Figure 1: Dual-Agent GANs architecture.

- **Using a 3D model to transform a face into the side view.**
- Use GAN to compensate the blurred details of the side view (synthesis) faces.

Dual-Agent GANs Theory Results Transferable Learning

Clustering with deep learning De-animation Reference

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss \mathscr{L}_{D_ϕ} and generator loss \mathscr{L}_{G_ϕ} alternatively.

$$
\mathcal{L}_{D_{\phi}} = \mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip},
$$

$$
\mathcal{L}_{G_{\phi}} = (-\mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip}) + \lambda_2 \mathcal{L}_{pp}.
$$
 (1)

The adversarial loss

The adversarial loss (Wasserstein distance [2]) computes the difference between the distributions of real faces and synthesis faces.

$$
\mathcal{L}_{adv} = \sum_{j} |y_j - D_{\phi}(y_j)| - k_t \sum_{i} |\tilde{x}_i - D_{\phi}(\tilde{x}_i)|,
$$

$$
k_{t+1} = k_t + \alpha \left(\gamma \sum_{j} |y_j - D_{\phi}(y_j)| - \sum_{i} |\tilde{x}_i - D_{\phi}(\tilde{x}_i)| \right).
$$
 (2)

Dual-Agent GANs Theory Results Transferable Learning

Clustering with deep learning De-animation Reference

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss \mathscr{L}_{D_ϕ} and generator loss \mathscr{L}_{G_ϕ} alternatively.

$$
\mathcal{L}_{D_{\phi}} = \mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip},
$$

$$
\mathcal{L}_{G_{\phi}} = (-\mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip}) + \lambda_2 \mathcal{L}_{pp}.
$$
 (1)

The identity loss

The identity loss preserves the identity of the same face.

$$
\mathcal{L}_{ip} = \frac{1}{N} \sum_{j} -(Y_j \log(D_{\phi}(y_j)) + (1 - Y_j) \log(1 - D_{\phi}(y_j)))
$$

+
$$
\frac{1}{N} \sum_{i} -(Y_j \log(D_{\phi}(\tilde{x}_i)) + (1 - Y_j) \log(1 - D_{\phi}(\tilde{x}_i))).
$$
 (2)

Dual-Agent GANs Theory Results Transferable Learning

Clustering with deep learning De-animation Reference

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss \mathscr{L}_{D_ϕ} and generator loss \mathscr{L}_{G_ϕ} alternatively.

$$
\mathcal{L}_{D_{\phi}} = \mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip},
$$

$$
\mathcal{L}_{G_{\phi}} = (-\mathcal{L}_{adv} + \lambda_1 \mathcal{L}_{ip}) + \lambda_2 \mathcal{L}_{pp}.
$$
 (1)

The pixel-wise loss

The pixel-wise loss preserves the shape from the original synthesis face.

$$
\mathcal{L}_{\text{pp}} = \sum_{j} |x_i - \tilde{x}_i|,
$$

\n
$$
\tilde{x}_i = G_{\phi}(x).
$$
 (2)

Results

Dual-Agent GANs

Theory Results

Transferable Learning Clustering with deep learning

De-animation Reference

Figure 2: Quality of refined results w.r.t. the network convergence measurement.

Dual-Agent GANs Results

Transferable Learning Clustering with deep learning

De-animation Reference

Figure 2: Qualitative analysis of DA-GAN.

Outline

Dual-Agent GANs Transferable Learning Theory Results Clustering with deep learning De-animation Reference

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks [3]

Figure 3: Transferable Learning architecture.

- Use a multi-layer domain discriminator to make the distribution of unsupervised learning branch coherent to supervised one.
- Use a similarity function to transform the label in source domain into that in target domain.

Transferable Learning Theory Results

Clustering with deep learning De-animation Reference

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The whole loss function

$$
\mathcal{L} = \mathcal{L}_{\text{sup}} + \alpha \mathcal{L}_{DT} + \beta \mathcal{L}_{ST}.
$$
 (3)

The supervised learning loss

The supervised learning loss which is from the target domain is defined in the most traditional way.

$$
\mathscr{L}_{\sup} = \mathbb{E}_{\mathscr{X}^{\mathscr{T}}, \ \mathscr{Y}^{\mathscr{T}}}\left(E^{t}(\mathbf{x}^{t}) - y_{t}\right).
$$
 (4)

Transferable Learning Theory Results

Clustering with deep learning De-animation Reference

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The whole loss function

$$
\mathcal{L} = \mathcal{L}_{\text{sup}} + \alpha \mathcal{L}_{DT} + \beta \mathcal{L}_{ST}.
$$
 (3)

The domain discriminative loss

The domain discriminative loss is comprised by the logarithmic differences from losses in source and target domains.

$$
\mathscr{L}_{DT} = -\mathbb{E}_{\mathscr{X}^{\mathscr{S}}}(\log(\mathbf{d}_{I}^{s})) - \mathbb{E}_{\mathscr{X}^{\hat{\mathscr{S}}}}\left(\log(1-\mathbf{d}_{I}^{\tilde{t}})\right) - \mathbb{E}_{\mathscr{X}^{\mathscr{S}}}\left(\log(1-\mathbf{d}_{I}^{s})) - \mathbb{E}_{\mathscr{X}^{\hat{\mathscr{S}}}}\left(\log(\mathbf{d}_{I}^{\tilde{t}})\right)\right).
$$
\n(4)

Transferable Learning Theory Results

Clustering with deep learning De-animation Reference

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The whole loss function

$$
\mathcal{L} = \mathcal{L}_{\text{sup}} + \alpha \mathcal{L}_{DT} + \beta \mathcal{L}_{ST}.
$$
 (3)

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$
\mathcal{L}_{ST} = \mathcal{L}_{ST} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\mathcal{S}} \right) + \mathcal{L}_{ST, \text{ sup}} \left(\mathcal{X}^{\tilde{\mathcal{F}}} \right)
$$

+
$$
\mathcal{L}_{ST, \text{ unsup}} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\tilde{\mathcal{F}}} \right).
$$
 (4)

Transferable Learning Theory **Results Clustering with deep learning De-animation Reference**

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$
\mathcal{L}_{ST} = \mathcal{L}_{ST} \left(\mathcal{X} \tilde{\mathcal{F}}, \mathcal{X} \mathcal{S} \right) + \mathcal{L}_{ST, \text{ sup}} \left(\mathcal{X} \tilde{\mathcal{F}} \right) + \mathcal{L}_{ST, \text{ unsup}} \left(\mathcal{X} \tilde{\mathcal{F}}, \mathcal{X} \tilde{\mathcal{F}} \right).
$$
 (3)

The semantic transfer loss (cross domain)

Use similarity to calculate the cross domain entropy between the source and the unsupervised target.

$$
\mathscr{L}_{ST}\left(\mathscr{X}^{\tilde{\mathscr{T}}},\,\mathscr{X}^{\mathscr{S}}\right) = \mathbb{E}_{\mathscr{X}^{\tilde{\mathscr{F}}}}\left(H\left(\frac{\sigma}{\tau}v_{s}(\tilde{\mathbf{x}}^{t})\right)\right),\tag{4}
$$

$$
[v_{s}(\tilde{\mathbf{x}}^{t})]_{i} = \psi(\tilde{\mathbf{x}}^{t},\,\mathbf{x}_{i}^{s}).
$$

May 18 May 1

Transferable Learning Theory Results

Clustering with deep learning De-animation Reference

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$
\mathcal{L}_{ST} = \mathcal{L}_{ST} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\mathcal{S}} \right) + \mathcal{L}_{ST, \text{ sup}} \left(\mathcal{X}^{\tilde{\mathcal{F}}} \right)
$$

+
$$
\mathcal{L}_{ST, \text{ unsup}} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\tilde{\mathcal{F}}} \right).
$$
 (3)

The semantic transfer loss (supervised)

Define the centroid of each class as $c_i^{\mathscr{T}}$, then we have.

$$
\mathscr{L}_{ST, \text{ sup}}\left(\mathscr{X}^{\mathscr{T}}\right) = -\mathbb{E}_{\mathscr{X}^t}\left(\log\left(\text{softmax}\left(v_t(\mathbf{x}^t)\right)\right)\right),\tag{4}
$$

$$
[v_t(\mathbf{x}^t)]_i = \psi\left(\mathbf{x}^t, \, c_i^{\mathscr{T}}\right).
$$

Transferable Learning Theory **Results Clustering with deep learning De-animation Reference**

Transferable Learning

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$
\mathcal{L}_{ST} = \mathcal{L}_{ST} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\mathcal{S}} \right) + \mathcal{L}_{ST, \sup} \left(\mathcal{X}^{\tilde{\mathcal{F}}} \right) + \mathcal{L}_{ST, \sup} \left(\mathcal{X}^{\tilde{\mathcal{F}}}, \mathcal{X}^{\mathcal{F}} \right).
$$
 (3)

The semantic transfer loss (unsupervised)

Use similarity to calculate the cross domain entropy between unsupervised loss and supervised one.

$$
\mathscr{L}_{ST, \text{ unsup}}\left(\mathscr{X}^{\tilde{\mathscr{T}}}, \mathscr{X}^{\tilde{\mathscr{T}}}\right) = \mathbb{E}_{\mathscr{X}^{\tilde{\mathscr{T}}}}\left(H\left(\frac{\sigma}{\tau}v_t(\tilde{\mathbf{x}}^t)\right)\right),\qquad(4)
$$

Dual-Agent GANs Transferable Learning Theory **Results Clustering with deep learning De-animation Reference**

Transferable Learning Results

Figure 4: Transfer the learned representation on SVHN digits 0-4 (left) to MNIST digits 5-9 (right).

Table 1: Qualitative analysis of transfered learning model, where **k** is the number of used labels.

Outline

Deep Subspace Clustering Networks [4] Dual-Agent GANs Z_{Θ_e} $Z_{\Theta_e}\Theta_s$ **Transferable Learning Clustering with deep learning**

š

Results De-animation Reference

Theory

۰ı

 z_i

П

■ The basic structure is autoencoder.

Clustering with deep learning

 \blacksquare Insert the self-expressive (SE) problem between the encoder and decoder.

ះ

Dual-Agent GANs Transferable Learning Clustering with deep learning Theory Results De-animation Reference

Clustering with deep learning

Deep Subspace Clustering Networks

The whole loss function

Minimize the combined loss of autoencoder's and SE's.

$$
\mathscr{L} = \frac{1}{2} ||\mathbf{X} - D(E(\mathbf{X}))||^2_F + \lambda_1 ||\mathbf{C}||_p + \frac{\lambda_2}{2} ||E(\mathbf{X}) - E(\mathbf{X})\mathbf{C}||^2_F,
$$

s.t. diag(**C**) = **0**.

(5)

Traditional SE problem

Assuming that we have *N* samples with a length of *L*, then all samples comprise a matrix **X** with a size of *L×N*,

$$
\min_{\mathbf{C}} \|\mathbf{C}\|_{p} + \frac{\lambda}{2} \|\mathbf{X} - \mathbf{X}\mathbf{C}\|_{F}^{2},
$$
\n
$$
\text{s.t. } \text{diag}(\mathbf{C}) = \mathbf{0},
$$
\n(6)

May 18 Diversity of Houston **May 18** Diversity of Houston **May 18**

Clustering with deep learning Results

Figure 6: An example of clustering by using affinity matrix.

Clustering with deep learning Results

Dual-Agent GANs Transferable Learning Clustering with deep learning Theory Results

De-animation Reference

Figure 6: Using the middle part of the network, i.e. the SE model, we could construct the affinity matrix for clustering.

Outline

- This network is adapted from DeepMask [5]. The input is the whole image rather than a local patch.
- Use multiple kernels to produce multiple frames.
- Replace the score value with the prediction value. **May 18** Diversity of Houston **May 18** Diversity of Houston **May 18** Diversity of Houston **May 18**

Clustering with deep learning De-animati Theory Results Reference

De-animation

Learning to See Physics via Visual De-animation [7]

Figure 8: The visual de-animation architecture.

- An autoencoder-lite structure. While the decoder is a physical model (from physical states to objects) and the encoder is CNN (from objects to physical states).
- The decoder, i.e. the physical engine could be differentiable or not.

De-animation Result

Clustering with deep learning

De-animation Theory Results **Reference**

Figure 9: Compare the performances of PhysNet and VDA.

Outline

Dual-Agent GANs Transferable Learning

Clustering with deep learning De-animation Reference

Reference I

Dual-Agent GANs Transferable Learning

Clustering with deep learning De-animation Reference

Reference II

