Weekly Report I for Laboratory Research

University of Houston

May 18, 2018

Dual-Agent GANs

Transferable Learning

Clustering with deep learning

De-animation

Reference

Dual-Agent GANs

- Theory
- Results

Transferable Learning

- Theory
- Results

- Theory
- Results
- De-animation
 - Theory
 - Results

Dual-Agent GANs

Theory Results

Transferable Learning

Clustering with deep learning

De-animation

Reference

Dual-Agent GANs

Theory

Results

Transferable Learning

- Theory
- Results

- Theory
- Results
- De-animation
 - Theory
 - Results
- 5 Reference

Dual-Agent GANs Dual-Agent GANs for Photorealistic and Identity Preserving Profile

Face Synthesis [1]

Theory

- Transferable Learning
- Clustering with deep learning
- **De-animation**
- Reference

Figure 1: Dual-Agent GANs architecture.

- Using a 3D model to transform a face into the side view.
- Use GAN to compensate the blurred details of the side view (synthesis) faces.

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss $\mathscr{L}_{D_{\phi}}$ and generator loss $\mathscr{L}_{G_{\phi}}$ alternatively.

$$\begin{aligned} \mathscr{L}_{D_{\phi}} &= \mathscr{L}_{adv} + \lambda_{1} \mathscr{L}_{ip}, \\ \mathscr{L}_{G_{\phi}} &= \left(-\mathscr{L}_{adv} + \lambda_{1} \mathscr{L}_{ip} \right) + \lambda_{2} \mathscr{L}_{pp}. \end{aligned}$$
 (1)

The adversarial loss

The adversarial loss (Wasserstein distance [2]) computes the difference between the distributions of real faces and synthesis faces.

$$\mathcal{L}_{adv} = \sum_{j} |y_{j} - D_{\phi}(y_{j})| - k_{t} \sum_{i} |\tilde{x}_{i} - D_{\phi}(\tilde{x}_{i})|,$$

$$k_{t+1} = k_{t} + \alpha \left(\gamma \sum_{j} |y_{j} - D_{\phi}(y_{j})| - \sum_{i} |\tilde{x}_{i} - D_{\phi}(\tilde{x}_{i})| \right).$$
(2)

Dual-Agent GANs

Theory

Transferable Learning

Clustering with deep learning

De-animation

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss $\mathscr{L}_{D_{\phi}}$ and generator loss $\mathscr{L}_{G_{\phi}}$ alternatively.

$$\begin{aligned} \mathscr{L}_{\mathcal{D}_{\phi}} &= \mathscr{L}_{\mathrm{adv}} + \lambda_{1} \mathscr{L}_{\mathrm{ip}}, \\ \mathscr{L}_{\mathcal{G}_{\phi}} &= \left(-\mathscr{L}_{\mathrm{adv}} + \lambda_{1} \mathscr{L}_{\mathrm{ip}} \right) + \lambda_{2} \mathscr{L}_{\mathrm{pp}}. \end{aligned}$$

$$\tag{1}$$

The identity loss

The identity loss preserves the identity of the same face.

$$\mathcal{L}_{ip} = \frac{1}{N} \sum_{j} -(Y_{j} \log(D_{\phi}(y_{j})) + (1 - Y_{j}) \log(1 - D_{\phi}(y_{j}))) + \frac{1}{N} \sum_{i} -(Y_{i} \log(D_{\phi}(\tilde{x}_{i})) + (1 - Y_{i}) \log(1 - D_{\phi}(\tilde{x}_{i}))).$$
(2)

Transferable Learning

Dual-Agent GANs

Theory

Clustering with deep learning

De-animation

Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

The whole loss function

Minimize the discriminator loss $\mathscr{L}_{D_{\phi}}$ and generator loss $\mathscr{L}_{G_{\phi}}$ alternatively.

$$\begin{aligned} \mathscr{L}_{D_{\phi}} &= \mathscr{L}_{adv} + \lambda_{1} \mathscr{L}_{ip}, \\ \mathscr{L}_{G_{\phi}} &= \left(-\mathscr{L}_{adv} + \lambda_{1} \mathscr{L}_{ip} \right) + \lambda_{2} \mathscr{L}_{pp}. \end{aligned} \tag{1}$$

The pixel-wise loss

The pixel-wise loss preserves the shape from the original synthesis face.

$$\begin{aligned} \mathscr{L}_{\text{pp}} &= \sum_{j} |x_{i} - \tilde{x}_{j}|, \\ \tilde{x}_{i} &= G_{\phi}(x). \end{aligned} \tag{2}$$

GANS Theory

Transferable Learning

Dual-Agent

Clustering with deep learning

De-animation

Dual-Agent GANs Results

Dual-Agent GANs Theory Results

Transferable Learning

Clustering with deep learning

De-animation

Reference

Figure 2: Quality of refined results w.r.t. the network convergence measurement.

Dual-Agent GANs Results

Dual-Agent GANs Theory Results

Transferable Learning

Clustering with deep learning

De-animation Reference

- (a) Refined results of DA-GAN.
- (b) Feature space of real faces and DA-GAN synthetic faces.

Figure 2: Qualitative analysis of DA-GAN.

Dual-Agent GANs

Transferable Learning

Theory Results

Clustering with deep learning

De-animation

Reference

Dual-Agent GANs

- Theory
- Results

2 Transferable Learning

- Theory
- Results

- Theory
- Results
- De-animation
 - Theory
 - Results
- 5 Reference

Label Efficient Learning of Transferable Representations across Domains and Tasks [3]

Figure 3: Transferable Learning architecture.

- Use a multi-layer domain discriminator to make the distribution of unsupervised learning branch coherent to supervised one.
- Use a similarity function to transform the label in source domain into that in target domain.

Dual-Agent GANs

Transferable Learning

Theory Results

Clustering with deep learning

De-animation

Transferable Learning Label Efficient Learning of Transferable Representations across Domains and Tasks

Dual-Agent GANs

Transferable Learning Theory

Clustering with deep learning

Besults

De-animation

Reference

The whole loss function

$$\mathscr{L} = \mathscr{L}_{\sup} + \alpha \mathscr{L}_{DT} + \beta \mathscr{L}_{ST}.$$

The supervised learning loss

The supervised learning loss which is from the target domain is defined in the most traditional way.

$$\mathscr{L}_{\sup} = \mathbb{E}_{\mathscr{X}^{\mathscr{T}}, \mathscr{Y}^{\mathscr{T}}} \left(\boldsymbol{E}^{t}(\mathbf{x}^{t}) - \boldsymbol{y}_{t} \right).$$
(4)

(3)

Transferable Learning Label Efficient Learning of Transferable Representations across Domains and Tasks

Dual-Agent GANs

Transferable Learning Theory

Results

Clustering with deep learning

De-animation

Reference

The whole loss function

$$\mathscr{L} = \mathscr{L}_{sup} + \alpha \mathscr{L}_{DT} + \beta \mathscr{L}_{ST}.$$

(3)

The domain discriminative loss

The domain discriminative loss is comprised by the logarithmic differences from losses in source and target domains.

$$\begin{aligned} \mathscr{L}_{DT} &= -\mathbb{E}_{\mathscr{X}^{\mathscr{T}}}\left(\log(\mathbf{d}_{l}^{s})\right) - \mathbb{E}_{\mathscr{X}^{\widehat{\mathscr{T}}}}\left(\log(1-\mathbf{d}_{l}^{\tilde{t}})\right) \\ &- \mathbb{E}_{\mathscr{X}^{\mathscr{T}}}\left(\log(1-\mathbf{d}_{l}^{s})\right) - \mathbb{E}_{\mathscr{X}^{\widehat{\mathscr{T}}}}\left(\log(\mathbf{d}_{l}^{\tilde{t}})\right). \end{aligned} \tag{4}$$

Transferable Learning Label Efficient Learning of Transferable Representations across Domains and Tasks

Dual-Agent GANs

Transferable Learning Theory

Results

Clustering with deep learning

De-animation Reference The whole loss function

$$\mathscr{L} = \mathscr{L}_{\sup} + \alpha \mathscr{L}_{DT} + \beta \mathscr{L}_{ST}.$$

(3)

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$\begin{aligned} \mathscr{L}_{ST} &= \mathscr{L}_{ST} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right) + \mathscr{L}_{ST, \ \text{sup}} \left(\mathscr{X}^{\mathscr{T}} \right) \\ &+ \mathscr{L}_{ST, \ \text{unsup}} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right). \end{aligned} \tag{4}$$

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$\begin{aligned} \mathscr{L}_{ST} &= \mathscr{L}_{ST} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right) + \mathscr{L}_{ST, \ \text{sup}} \left(\mathscr{X}^{\mathscr{T}} \right) \\ &+ \mathscr{L}_{ST, \ \text{unsup}} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right). \end{aligned}$$
(3)

The semantic transfer loss (cross domain)

Use similarity to calculate the cross domain entropy between the source and the unsupervised target.

$$\mathcal{L}_{ST}\left(\mathscr{X}^{\tilde{\mathscr{T}}},\ \mathscr{X}^{\mathscr{T}}\right) = \mathbb{E}_{\mathscr{X}^{\tilde{\mathscr{T}}}}\left(H\left(\frac{\sigma}{\tau}v_{s}(\tilde{\mathbf{x}}^{t})\right)\right),$$
$$[v_{s}(\tilde{\mathbf{x}}^{t})]_{i} = \psi(\tilde{\mathbf{x}}^{t},\ \mathbf{x}_{i}^{s}).$$
(4)

Dual-Agent GANs

Transferable Learning

Theory Results

Clustering with deep learning

De-animation

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$\mathcal{L}_{ST} = \mathcal{L}_{ST} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right) + \mathcal{L}_{ST, \text{ sup}} \left(\mathscr{X}^{\mathscr{T}} \right) + \mathcal{L}_{ST, \text{ unsup}} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right).$$
(3)

The semantic transfer loss (supervised)

Define the centroid of each class as $c_i^{\mathscr{T}}$, then we have.

$$\mathscr{L}_{ST, sup}\left(\mathscr{X}^{\mathscr{T}}\right) = -\mathbb{E}_{\mathscr{X}^{t}}\left(\log\left(\operatorname{softmax}\left(\boldsymbol{v}_{t}(\mathbf{x}^{t})\right)\right)\right),$$
$$[\boldsymbol{v}_{t}(\mathbf{x}^{t})]_{i} = \psi\left(\mathbf{x}^{t}, \ \boldsymbol{c}_{i}^{\mathscr{T}}\right).$$
(4)

Dual-Agent GANs

Transferable Learning

Theory Results

Clustering with deep learning

De-animation

Label Efficient Learning of Transferable Representations across Domains and Tasks

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities between samples from different domains.

$$\begin{aligned} \mathscr{L}_{ST} &= \mathscr{L}_{ST} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{S}} \right) + \mathscr{L}_{ST, \ \text{sup}} \left(\mathscr{X}^{\mathscr{T}} \right) \\ &+ \mathscr{L}_{ST, \ \text{unsup}} \left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}} \right). \end{aligned} \tag{3}$$

The semantic transfer loss (unsupervised)

Use similarity to calculate the cross domain entropy between unsupervised loss and supervised one.

$$\mathscr{L}_{ST, \text{ unsup}}\left(\mathscr{X}^{\tilde{\mathscr{T}}}, \ \mathscr{X}^{\mathscr{T}}\right) = \mathbb{E}_{\mathscr{X}^{\tilde{\mathscr{T}}}}\left(H\left(\frac{\sigma}{\tau}\boldsymbol{v}_{t}(\tilde{\boldsymbol{x}}^{t})\right)\right),$$
$$[\boldsymbol{v}_{t}(\tilde{\boldsymbol{x}}^{t})]_{i} = \psi\left(\tilde{\boldsymbol{x}}^{t}, \ \boldsymbol{c}_{i}^{\mathscr{T}}\right).$$
(4)

Dual-Agent GANs

Transferable Learning

Theory Results

Clustering with deep learning

De-animation

Transferable Learning Results

Dual-Agent GANs

Transferable Learning Theory Besults

Clustering with deep learning

De-animation

Reference

1 1 2 🕅 🚛 --> 56789

Figure 4: Transfer the learned representation on SVHN digits 0-4 (left) to MNIST digits 5-9 (right).

Table 1: Qualitative analysis of transfered learning model, where \mathbf{k} is the number of used labels.

Method	k=2	k=3	k=4	k=5
Target only	0.642 ± 0.026	0.771 ± 0.015	0.801 ± 0.010	0.840 ± 0.013
Fine-tune	0.612 ± 0.020	0.779 ± 0.018	0.802 ± 0.016	0.830 ± 0.011
Matching nets	0.469 ± 0.019	0.455 ± 0.014	0.566 ± 0.013	0.513 ± 0.023
Fine-tuned matching nets	0.645 ± 0.019	0.755 ± 0.024	0.793 ± 0.013	0.827 ± 0.011
Ours: fine-tune + adv.	0.702 ± 0.020	0.800 ± 0.013	0.804 ± 0.014	0.831 ± 0.013
Ours: full model ($\gamma = 0.1$)	$\textbf{0.917} \pm \textbf{0.007}$	$\textbf{0.936} \pm \textbf{0.006}$	$\textbf{0.942} \pm \textbf{0.006}$	$\textbf{0.950} \pm \textbf{0.004}$

3

Dual-Agent GANs

Transferable Learning

Clustering with deep learning

Theory Results

De-animation

Reference

Dual-Agent GANs

- Theory
- Results

Transferable Learning

- Theory
- Results

- Theory
- Results
- De-animation
 - Theory
 - Results
- 5 Reference

Clustering with deep learning Deep Subspace Clustering Networks [4]

- Dual-Agent GANs
- Transferable Learning
- Clustering with deep learning
- Theory Results
- De-animation Reference

Figure 5: Deep Subspace Clustering Networks' architecture.

- The basic structure is autoencoder.
- Insert the self-expressive (SE) problem between the encoder and decoder.

Clustering with deep learning Deep Subspace Clustering Networks

The whole loss function

Minimize the combined loss of autoencoder's and SE's.

$$\mathscr{L} = \frac{1}{2} \|\mathbf{X} - D(E(\mathbf{X}))\|_{F}^{2} + \lambda_{1} \|\mathbf{C}\|_{\rho} + \frac{\lambda_{2}}{2} \|E(\mathbf{X}) - E(\mathbf{X})\mathbf{C}\|_{F}^{2},$$

s.t. diag(**C**) = **0**. (5)

Traditional SE problem

Assuming that we have *N* samples with a length of *L*, then all samples comprise a matrix **X** with a size of $L \times N$,

$$\min_{\mathbf{C}} \|\mathbf{C}\|_{p} + \frac{\lambda}{2} \|\mathbf{X} - \mathbf{X}\mathbf{C}\|_{F}^{2},$$

s.t. diag(**C**) = **0**,

(6)

Clustering with deep learning

Theory

Dual-Agent GANs

De-animation Reference

Clustering with deep learning Results

Transferable Learning

Clustering with deep learning Theory Results

De-animation Reference

Figure 6: An example of clustering by using affinity matrix.

Clustering with deep learning Results

Dual-Agent GANs

Transferable Learning

Clustering with deep learning Theory Results

De-animation Reference

Figure 6: Using the middle part of the network, i.e. the SE model, we could construct the affinity matrix for clustering.

Dual-Agent GANs

Transferable Learning

Clustering with deep learning

De-animation

Theory Results

Reference

Dual-Agent GANs

- Theory
- Results

Transferable Learning

- Theory
- Results

- Theory
- Results

- Theory
- Results
- Reference

De-animation

Learning Physical Intuition of Block Towers by Example [6]

Figure 7: The PhysNet architecture.

- This network is adapted from DeepMask [5]. The input is the whole image rather than a local patch.
- Use multiple kernels to produce multiple frames.
- Replace the score value with the prediction value.

University of Houston

Dual-Agent GANs

Transferable Learning

Clustering with deep learning

De-animation Theory

Results

GANs

Theory

Reference

De-animation

Learning to See Physics via Visual De-animation [7]

Figure 8: The visual de-animation architecture.

- An autoencoder-lite structure. While the decoder is a physical model (from physical states to objects) and the encoder is CNN (from objects to physical states).
- The decoder, i.e. the physical engine could be differentiable or not.

De-animation Results

- Dual-Agent GANs
- Transferable Learning
- Clustering with deep learning
- De-animation Theory Results
- Reference

Video	1	4		
VDA (ours)		1		-
PhysNet	2	2		
Video			1	

VDA (ours)	1	1	1
PhysNet			

(a) Our reconstruction and prediction results given a single frame (marked in red). From top to bottom: ground truth, our results, results from Lerer et al. [2016].

Methods	# Blocks			Mean
	2	3	4	
Chance	50	50	50	50
Humans	67	62	62	64
PhysNet	66	66	73	68
GoogLeNet	70	70	70	70
VDA (init)	73	74	72	73
VDA (joint)	75	76	73	75
VDA (full)	76	76	74	75

(b) Accuracy (%) of stability prediction on the blocks dataset

Methods	2	3	4	Mean
PhysNet	56	68	70	65
GoogLeNet	70	67	71	69
VDA (init)	74	74	67	72
VDA (joint)	75	77	70	74
VDA (full)	76	76	72	75

(c) Accuracy (%) of stability prediction when trained on synthetic towers of 2 and 4 blocks, and tested on all block tower sizes.

Figure 9: Compare the performances of PhysNet and VDA.

Dual-Agent GANs

Transferable Learning

Clustering with deep learning

De-animation

Reference

Dual-Agent GANs

- Theory
- Results

Transferable Learning

- Theory
- Results

- Theory
- Results
- De-animation
 - Theory
 - Results

Reference I

- Dual-Agent GANs
- Transferable Learning
- Clustering with deep learning
- **De-animation**
- Reference

- J. Zhao, L. Xiong, P. Karlekar Jayashree, J. Li, F. Zhao, Z. Wang, P. Sugiri Pranata, P. Shengmei Shen, S. Yan, and J. Feng, "Dual-agent gans for photorealistic and identity preserving profile face synthesis," in *Advances in Neural Information Processing Systems 30*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 66–76. [Online]. Available: http://papers.nips.cc/paper/ 6612-dual-agent-gans-for-photorealistic-and-identity-preserving-profile pdf
- D. Berthelot, T. Schumm, and L. Metz, "BEGAN: boundary equilibrium generative adversarial networks," *CoRR*, vol. abs/1703.10717, 2017. [Online]. Available: http://arxiv.org/abs/1703.10717
- - Z. Luo, Y. Zou, J. Hoffman, and L. Fei-Fei, "Label Efficient Learning of Transferable Representations across Domains and Tasks," *ArXiv e-prints*, Nov. 2017.

Reference II

- Dual-Agent GANs
- Transferable Learning
- Clustering with deep learning
- **De-animation**
- Reference

- P. Ji, T. Zhang, H. Li, M. Salzmann, and I. D. Reid, "Deep subspace clustering networks," *CoRR*, vol. abs/1709.02508, 2017. [Online]. Available: http://arxiv.org/abs/1709.02508
- P. H. O. Pinheiro, R. Collobert, and P. Dollár, "Learning to segment object candidates," *CoRR*, vol. abs/1506.06204, 2015. [Online]. Available: http://arxiv.org/abs/1506.06204
- A. Lerer, S. Gross, and R. Fergus, "Learning physical intuition of block towers by example," *CoRR*, vol. abs/1603.01312, 2016. [Online]. Available: http://arxiv.org/abs/1603.01312
- J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum, "Learning to see physics via visual de-animation," in *Advances in Neural Information Processing Systems 30*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 153–164. [Online]. Available: http://papers.nips.cc/paper/
 6620-learning-to-see-physics-via-visual-de-animation.pdf