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Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis [1]
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Figure 1: Dual-Agent GANs architecture.

m Using a 3D model to transform a face into the side view.

m Use GAN to compensate the blurred details of the side view
(synthesis) faces.
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Dual-Agent GANs

Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function

Minimize the discriminator loss ., and generator loss .2,
alternatively.

2p,

o — c%dv+)“1ﬂpv
e

o (—«iﬂadv +)L1 Zp) +12°%p~

The adversarial loss

The adversarial loss (Wasserstein distance [2]) computes the difference
between the distributions of real faces and synthesis faces.

Zdv :ZU’/— Dy (y))| — kt Y 1% — Dy (Xi)|,
]

i
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Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function

Minimize the discriminator loss ., and generator loss .2,
alternatively.

ZLp, = ZLatv + ML,

? (1)
= (*zadv +A1 Zp) Jrlg.,%p.

The identity loss

The identity loss preserves the identity of the same face.

i = /1/;_(\/1|°g(D¢(}’j))+(1 —Y))log(1 - Dy(¥})))
)
+1NZ_(W|og(D¢()N(i))+(1 — Yi)log(1 —Dy(X;)))-

.
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Dual-Agent GANs
Dual-Agent GANs for Photorealistic and Identity Preserving Profile
Face Synthesis

The whole loss function

Minimize the discriminator loss $D¢ and generator loss $G¢
alternatively.

£p, = Laav+ MLy, )

gG,p = (_fadv + M Xp) +A'2=%p'

The pixel-wise loss
The pixel-wise loss preserves the shape from the original

synthesis face.
Zop = Z |x; — Xil,
J

Xi = Gy(x).
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Figure 2: Quality of refined results w.r.t. the network convergence

measurement.
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Figure 2: Qualitative analysis of DA-GAN.
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Transferable Learning
Label Efficient Learning of Transferable Representations across
Domains and Tasks [3]
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Figure 3: Transferable Learning architecture.

m Use a multi-layer domain discriminator to make the
distribution of unsupervised learning branch coherent to
supervised one.

m Use a similarity function to transform the label in source
domain into that in target domain.
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Transferable Learning

Label Efficient Learning of Transferable Representations across

Domains and Tasks

£ = ﬂup +oZpr +ﬁ$ST'

The whole loss function

(3)

4

defined in the most traditional way.

o%up :Ejg'97 T (Et(xt)_yt)-

The supervised learning loss

The supervised learning loss which is from the target domain is

(4)

v
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Label Efficient Learning of Transferable Representations across
Domains and Tasks

The whole loss function

zzo%up“‘agDT"‘ﬁgST' (3)

v

The domain discriminative loss

The domain discriminative loss is comprised by the logarithmic
differences from losses in source and target domains.

Zpr = —E 4. (log(d7)) —E, s (log(1 _d;))

. (4)
—Ey» (log(1—df)) ~E,,.5 (log(d])).

A,
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Label Efficient Learning of Transferable Representations across
Domains and Tasks

The whole loss function

e?:e%sup'i‘agDT'i_ﬁgST' (3)

V.

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities
between samples from different domains.

Lsr=Lor (27, 27 )+ Lot wp (27)

+ Lot wep (27, 27).
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Transferable Learning

Label Efficient Learning of Transferable Representations across
Domains and Tasks

The semantic transfer loss
Dual-Agent

Dual- The semantic transfer loss is based on calculating the similarities
between samples from different domains.

Transferable
Learning

Zst =ZLst (35”’77 5&’”'7) +ZsT, sup (5&”7)

with deep +$ST, unsup (%‘97 %7) )
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The semantic transfer loss (cross domain)

Use similarity to calculate the cross domain entropy between the
source and the unsupervised target.

[vs(X")]; = w(X', x7).
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Label Efficient Learning of Transferable Representations across

Domains and Tasks

between samples from different domains.

Lst =ZLst (35’77 5&’”'7) +ZsT, sup (5&”7)
+ZsT, unsup (e%”j, %'7) )

The semantic transfer loss

The semantic transfer loss is based on calculating the similarities

The semantic transfer loss (supervised)

Define the centroid of each class as ¢/, then we have.

Zs1 ap (27) = Byt (10g (softmax ((x")))).,

v(x )i =y (%, &7 ).

A,

v
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Transferable Learning

Label Efficient Learning of Transferable Representations across
Domains and Tasks

The semantic transfer loss

Dual-Agent The semantic transfer loss is based on calculating the similarities
GANs between samples from different domains.
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Lor= 2o (27, 27) + Zor.un (77
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The semantic transfer loss (unsupervised)

Use similarity to calculate the cross domain entropy between
unsupervised loss and supervised one.

257 wup (27 W) 27 (H(ZuE))).

(4)
=y (5. 7).
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Traneterable Figure 4: Transfer the learned representation on SVHN digits 0-4
Learning (left) to MNIST digits 5-9 (right).
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el Table 1: Qualitative analysis of transfered learning model, where

Reference k is the number of used labels.
Method ‘ k=2 ‘ k=3 ‘ k=4 ‘ k=5 ‘
Target only \ 0.642 £ 0.026 \ 0.771 £ 0.015 \ 0.801 £ 0.010 \ 0.840 £ 0.013 \
Fine-tune \ 0.612 £ 0.020 \ 0.779 £ 0.018 \ 0.802 £ 0.016 \ 0.830 £ 0.011 \

Fine-tuned matching nets | 0.645 £ 0.019 | 0.755 £ 0.024 | 0.793 £ 0.013 | 0.827 £ 0.011 |

Ours: fine-tune + adv. ] 0.702 + 0.020 | 0.800 £ 0.013 | 0.804 £ 0.014 | 0.831 + 0.013 |
Ours: full model (y = 0.1) | 0.917 £ 0.007 | 0.936 £ 0.006 | 0.942 + 0.006 | 0.950 & 0.004 |

\
\
\
\ Matching nets [ 0.469 £ 0.019 | 0.455 £ 0.014 | 0.566 = 0.013 | 0.513 £ 0.023 |
\
\
\
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Clustering with deep learning
Deep Subspace Clustering Networks [4]
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Figure 5: Deep Subspace Clustering Networks’ architecture.

m The basic structure is autoencoder.

m Insert the self-expressive (SE) problem between the
encoder and decoder.
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Clustering with deep learning

Deep Subspace Clustering Networks

1 A
Z = S| X— D(E(X))|2+24|[Cllo+ 2| EX) — E(X)CIZ,

s.t. diag(C) =0.

The whole loss function

Minimize the combined loss of autoencoder’s and SE’s.

(5)

v

_ A
min||Cllp+ 5 IIX=XCl|Z,
s.t. diag(C) =0,

Traditional SE problem

Assuming that we have N samples with a length of L, then
all samples comprise a matrix X with a size of L x N,

(6)
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Figure 6: An example of clustering by using affinity matrix.
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Figure 6: Using the middle part of the network, i.e. the SE model,
we could construct the affinity matrix for clustering.
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De-animation

Learning Physical Intuition of Block Towers by Example [6]

Dual-Agent
GANs

ResNet- 34

512x7x7

Transferable
Learning

Clustering
with deep
learning

De-animation

Theory X: 3x224x224

fran(x): 1x1

Results

512x1x1

Reference 1024x1x1

Figure 7: The PhysNet architecture.

m This network is adapted from DeepMask [5]. The input is the
whole image rather than a local patch.
m Use multiple kernels to produce multiple frames.
m Replace the score value with the prediction value.
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De-animation

Learning to See Physics via Visual De-animation [7]

Object Physical
proposal object state
Object Physical
proposal object state

(I) Perception module

(a) Input

(b) Physical world _ . . P
representation (IT) Physics engine (simulation)

[ (IIT) Graphics engine (rendering) ]
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)
%9 © 40

(e) Output

Figure 8: The visual de-animation architecture.

m An autoencoder-lite structure. While the decoder is a
physical model (from physical states to objects) and the
encoder is CNN (from objects to physical states).

m The decoder, i.e. the physical engine could be differentiable

or not.
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De-animation

Results
Video Methods M Mean
[ [ 4 *  ae 2 3 4
Dual-Agent Chance 50 50 50 50

GANs VDA ‘ A A Humans 67 62 62 64
(ours) l l [T PhysNet 66 66 73 68

Transferable GoogLeNet 70 70 70 70

Learnin

¢ PhysNet VDA (init)y 73 74 72 73
Clustering YeRe VDA (joint) 75 76 73 75
with deep VDA (full) 76 76 74 75
learning §

. . | s N blocks dataset
De-animation Video | ' A
Theory

Results Methods 2 3 4 Mean

Reference VDA PhysNet 56 68 70 65
(ours) | GoogLeNet 70 67 71 69

VDA (init) 74 74 67 72
VDA (joint) 75 77 70 74
PhysNet VDA (full) 76 76 72 75

- s (D) Accuracy (%) of stability prediction on the

(c) Accuracy (%) of stability prediction when
() Our reconstruction and prediction results given a single trained on synthetic towers of 2 and 4 blocks, and
frame (marked in red). From top to bottom: ground truth, tested on all block tower sizes.
our results, results from Lerer et al. [2016].

Figure 9: Compare the performances of PhysNet and VDA.
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