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Personal site is ready

Site

Set-invariant m My personal site is ready during the two weeks.

:;T:"k m The DGX Work Station is ready. We have equipped it
Transfer with Matlab, Tensorflow and Docker. To be specific, |
Semi- have written to tutorials for it:

oG « How to access to the DGX server: Basic Linux Skills for
e Remote Controlling.

e How to manage the installed packages: Advanced
Linux Skills for Using NVIDIA Docker.

m A detailed version of this note could be seen here:
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https://cainmagi.github.io/playground/20180531linuxdocker/
https://cainmagi.github.io/playground/20180526linuxskill/
https://cainmagi.github.io/notes/note20180526/
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Set-invariant network
Deep Sets [1]

Site .
Set-invariant X
network
Theory ~ Y "
Results y2.
Style ‘ — III. A, Ilrl A Ilrl
Transfer

X1
Semi- X, ¢
supervised 8 T T

learning

Reference

Figure 1: Deep Sets architecture.

m Stacked structure by repeating the set-invariant layer.

m Each layer accepts a input set and give the corresponding
output set.
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Set-invariant network
Deep Sets

The net layer specification

Use a diagonal kernel I' and a bias vector B to define a layer.

F(x, T, B)=0 (B +(x—1-maxpool(x))T).

(1)

The probability view

This layer could be viewed by deducing the de Finetti’s Theorem.
We use X to represent the input set, 6 is the latent feature and

o, My are the hyper-parameters of the prior.

p(X[t, Mo) /[prmw] (Blat, Mp)de

— eh(a+9¢(X), M+Mo)—h(a, Mo)

(2)

University of Houston



Site

Set-invariant
network

Theo
Results

Style
Transfer

Semi-
supervised
learning

Reference

Set-invariant network

Results
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Figure 2: Result of the set-invariant classification.
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Style Transfer

Image Style Transfer Using Convolutional Neural Networks [2]

Liotal = @Loontent + BLatyle
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Figure 3: Architecture of optimization method.

m Use a pre-trained and fixed network to extract features.

m Use Gramian matrix (pre-defined method) to extract the
texture features.

m Optimize the input image to reduce the conjugated loss
function.

-10- University of Houston



Style Transfer

Image Style Transfer Using Convolutional Neural Networks
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The conjugated loss

The conjugated loss is composed of content loss and style loss.

Set-invariant
network

Style
Transfer
Theory

X = argmein afc(e, XC)+B$s(e, XS) (3)

Results

V.

The content loss

The content loss is from the output of one layer (we use .Z() to
represent the output features of the /™ layer).

Semi-
supervised
learning

Reference

Zo=71(8) - 7D (x5 (4)

v
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Style Transfer

Image Style Transfer Using Convolutional Neural Networks

Site

The conjugated loss
Setinvariant The conjugated loss is composed of content loss and style loss.

$:Z|I$sfer X= argmeinafc(ev xC)+B$S(e7 XS)° (3)

Semi-

supervised The content loss
earning X
Referonce The style loss is from feature maps of all layers.

Zs =Y. w4 (8) — 4 (xs)|I3,
/

;
g (x); = ® Y ZO )57 D (%)
K
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Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization [3]
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Figure 4: Architecture of normalization method.

Reference

m Use a pre-trained auto-encoder network. Fix the encoder
while train the decoder.

m Replace the mean and std. value of the encoded content
features with that of the style features.

m The mean and std value is calculated by instance
normalization.
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Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization

The net layer specification

e The loss function is also composed of content loss and style loss.
Set-invariant
network We use O to represent the parameters of the decoder.
Style
Transfer arg nenn fc(Xc, Xs, eD) +l$s(xc, Xs, GD) (5)
D
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The content loss

| \

Reference

Zo=|E(D(Y)) - VI3. (6)

y is the encoded features whose mean and std. get replaced by
that of the encoded style features.

= o(Er)) (DN ) e

v

-13- University of Houston



Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization

Site

The net layer specification

Set-invariant

network The loss function is also composed of content loss and style loss.
Style We use O to represent the parameters of the decoder.

Transfer
Theory

Resuls argrgin,,?fc(xc, Xs, ©p)+ A Zs(Xe, Xs, Op). (5)
D
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Reference

Ls= ZI,HM(E(’)(D(V))) —w(EV(xs)[3

+ZI,HG(E("(D(9))) —o(ED(xs))3-
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Style Transfer

Universal Style Transfer via Feature Transforms [4]
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(a) Reconstruction (b) Single-level stylization

supervised
learning

Reference Figure 5: WCT architecture.

m Use pre-trained and fixed auto-encoder network to extract
the feature.

m Perform the Whitening and Coloring Transformation (WCT)
on features to get style converted.
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Style Transfer

Universal Style Transfer via Feature Transforms

Features

Site Use mean shifted features and decompose its covariance matrix.

Set-invariant

network y= E(I) (X) — M(E(I) (X)), ny = QAQT (7)

Style
Transfer
Theory

Results

| A\

The whitening transformation
. Remove the style feature by whitening.

learning

_1
Reference VC _ QCAC 5 QZ\-yC (8)

| A\

The coloring transformation
Add the style feature by coloring.

1
y = QsASz Q;’Ac. (9)

A\
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Results
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Figure 6: Using different layers’ features to perform WCT.
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Results
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Figure 6: Compare the performance of style transferring methods.
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Semi-supervised learning

Spatial Transformer Networks [5]

N e

W

I(t)

Lyarp (t + 1)

Figure 7: Differentiable image warp method.

m Propose a differentiable interpolation method for image

warping.

m Extend the affine transformation method.
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Semi-supervised learning

Spatial Transformer Networks

. Affine transformation

. Use mean shifted features and decompose its covariance matrix.

network

B )l )G o

;ran.sfer ( ylj> yI/ O Vij ylj ylj o Vij ( )
Differentiable Warp

supervised
Iwarp(xijv y:/» ):

learning
Z Z (h, w, t+1)M(1 — % —w)M(1 — |y; — hl),
h=1 w=1

Theory
Results

Reference

(11)

where M(:) = max(O0, -).
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness [6]
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Reference

m The baseline network is auto-encoder.

m Each layer of the decoder is optimized to the prediction flow
in different scale.

m The flow is optimized for both photometric target and
smoothness.
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Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via

Brightness Constancy and Motion Smoothness

The whole loss

The loss function is composed of photometric loss and

smoothness loss. We use DF" represent the n channel of the /™

layer of the up-sampling features (decoder output).

Lol = ; ZP(uv v, (1), I(t+1)) + ALs(u, V)‘u:D,m, v=Df?" (12)

The photometric loss

The photometric loss is used to control the warp error between

real frame and predicted (interpolated) frame.

Kp — ZPD(I(t) - Iwarp(t))'
Xy

(13)

v
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss

Site
Sotinvariant The loss function is composed of photometric loss and
network smoothness loss. We use D,C” represent the n™ channel of the /™

Style layer of the up-sampling features (decoder output).

Transfer

Sﬁgleil-‘vised "Zmal - Z ep(uv v, I(t)’ I(t+ 1 )) + )LES(LL V)|u:D,C‘, V:D,C2 . (1 2)
learning

Reference

The smoothness loss

The smooth loss is used to reduce the roughness of the flow
prediction.

() () 0 (3) () 0
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Semi-supervised learning

Semi-Supervised Learning for Optical Flow with Generative

Adversarial Networks [7]

Frozen

Updated

ruth flow

= Ll Ea.9)

senerator G

Discriminator D

Unlabeled dats Predictedflow  Flow warp error

(b) Update generator G using both labeled and unlabeled data

Figure 9: GAN based learning architecture.

m Only use labeled data to train the discriminator.

m Use both labeled and unlabeled data to train the generator.

m Use the warp loss from the previous to realize the
unsupervised learning part.
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss

The loss function is composed of a supervised learning loss (%)
and an adversarial loss (.%,). We use G and D to denote the
generator and discriminator respectively.

min mDax,fs(G)—i—lfa(G, D). (14)

The discriminator loss

When training the discriminator, we reduce the warp loss which
comes fromy=1l;—# (l;.1, @) andy =l; — # (l¢,1, do), where
we use # to represent the mentioned differentiable warping. We
use predicted flow to get y and ground truth to get y.

Z2(It, 141, o) = —log D(Y) — log(1 — D(y)). (15)
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss

Site
T The loss function is composed of a supervised learning loss (%)
network and an adversarial loss (.%,). We use G and D to denote the

Style generator and discriminator respectively.

Transfer

Semi- 3
min mDax,,fs(G)—i—l.fa(G, D). (14)

supervised
learning
Theory

Results

Reference

The generator loss (supervised)

When we use labeled data to optimize the generator, the
supervised learning loss contains a loss from ground truth and an
adversarial loss.

£8 =G(It, l+1) — GollF — Alog D(¥). (15)
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss

The loss function is composed of a supervised learning loss (%)
and an adversarial loss (.%,). We use G and D to denote the
generator and discriminator respectively.

m(i;n mDax.fs(G)—i—l.,?fa(G, D). (14)

4

The generator loss (unsupervised)

When we use unlabeled data to optimize the generator, The
unsupervised learning loss only contains an adversarial loss.

L8 = —2Llog D(Y). (15)

v
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Semi-supervised learning

Results

Sintel-Clean

Sintel-Final ~ KITTI 2012

Dt KITTI 2015 FlyingChairs
Method ‘ Training Datasets EPE EPE = BPE
Supervised Chairs 351 470 7.69 1719 4082% 215
Unsupervised KITTI 801 897 16.54 2553 54.40% 6.66
Baseline semi-supervised |  Chairs + KITTI 369 486 10.38 1807 39.33% 211
Proposed semi-supervised | - Chairs + KITTI 330 4.68 7.16 1602 3871% 195

Figure 10: Numerical comparison among different methods.
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EPE = 1045
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Unsupervised Supervised
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Baseline semi-supervised Proposed semi-supervised
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 semi-supervised
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Figure 11: lllustrated comparison among different methods.
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