Weekly Report II for Laboratory Research

University of Houston

May 26, 2018 and Jun. 1, 2018

Outline

Site

Set-invariant network

Style Transfer

Semisupervised learning

Reference

Site

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

Semi-supervised learning

- Theory
- Results

Outline

Set-invariant network

Style Transfer

Semisupervised learning

Reference

Site

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

Semi-supervised learning

- Theory
- Results

Personal site is ready

Site

Set-invariant network

Style Transfer

Semisupervised learning

- My personal site is ready during the two weeks.
- The DGX Work Station is ready. We have equipped it with Matlab, Tensorflow and Docker. To be specific, I have written to tutorials for it:
 - How to access to the DGX server: *Basic Linux Skills for Remote Controlling*. Check it:
 - How to manage the installed packages: Advanced Linux Skills for Using NVIDIA Docker. Check it
- A detailed version of this note could be seen here: Check it!

Outline

Site

Set-invariant network

Theory Results

Style Transfer

Semisupervised learning

Reference

Site

2

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

Semi-supervised learning

- Theory
- Results

Set-invariant network Deep Sets [1]

Site

Set-invariant network

Theory Results

Style Transfer

Semisupervised learning

Reference

Figure 1: Deep Sets architecture.

- Stacked structure by repeating the set-invariant layer.
- Each layer accepts a input set and give the corresponding output set.

Set-invariant network Deep Sets

Site

Set-invariant network

Theory Results

Style Transfer

Semisupervised learning

Reference

The net layer specification

Use a diagonal kernel Γ and a bias vector β to define a layer.

$$F(\mathbf{x}, \,\mathbf{\Gamma}, \,\boldsymbol{\beta}) = \sigma\left(\boldsymbol{\beta} + (\mathbf{x} - \mathbf{1} \cdot \text{maxpool}(\mathbf{x}))\mathbf{\Gamma}\right). \tag{1}$$

The probability view

This layer could be viewed by deducing the *de Finetti*'s Theorem. We use \mathbb{X} to represent the input set, θ is the latent feature and α , M_0 are the hyper-parameters of the prior.

$$p(\mathbb{X}|\alpha, M_0) = \int \left[\prod_{m=1}^{M} p(x_m|\theta)\right] p(\theta|\alpha, M_0) d\theta$$
$$= e^{h(\alpha + \phi(\mathbb{X}), M + M_0) - h(\alpha, M_0)}.$$
(2)

Set-invariant network Results

Site

Set-invariant network Theory Results

Style Transfer

Semisupervised learning

Reference

GI	Pred	GI	Pred	GI	Pred
building	building	standing	person	traffic	CIOCK
sign	street	surround	group	building	tower
nicture	brick	woman	toblo	toll	building
emnty	eidewalk	wine	eit	large	tall
white	side	nerson	room	tower	large
black	nole	group	woman	Euronean	cloudy
street	white	table	couple	front	front
image	stone	bottle	gather	clock	city
1113	2				Ro
GT	Pred	GT	Pred	GT	Pred
pnotograph	SKI	raptop	reingerator	beach	jet
snowboarde	snow	person	mage	snoreline	airpiane
olide	nerson	noom	magnet	walk	ocean
bill	snowy	deek	cohinet	cand	nlane
chow	hill	living	kitchen	lifemord	water
nerson	man	counter	shelf	white	body
slope	skiina	computer	wall	nerson	nerson
voung	skier	monitor	counter	surfboard	sky
Joung					

Figure 2: Result of the set-invariant classification.

Outline

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

Site

3

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

Semi-supervised learning

- Theory
- Results

Image Style Transfer Using Convolutional Neural Networks [2]

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

Figure 3: Architecture of optimization method.

- Use a pre-trained and fixed network to extract features.
- Use Gramian matrix (pre-defined method) to extract the texture features.
- Optimize the input image to reduce the conjugated loss function.

Image Style Transfer Using Convolutional Neural Networks

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

The conjugated loss

The conjugated loss is composed of content loss and style loss.

$$\mathbf{X} = \arg\min_{\boldsymbol{\theta}} \alpha \mathscr{L}_{c}(\boldsymbol{\theta}, \mathbf{X}_{c}) + \beta \mathscr{L}_{s}(\boldsymbol{\theta}, \mathbf{X}_{s}).$$
(3)

The content loss

The content loss is from the output of one layer (we use $\mathscr{F}^{(l)}$ to represent the output features of the *I*th layer).

$$\mathscr{L}_{c} = \|\mathscr{F}^{(L)}(\boldsymbol{\theta}) - \mathscr{F}^{(L)}(\mathbf{x}_{c})\|_{2}^{2}.$$
 (4)

Image Style Transfer Using Convolutional Neural Networks

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

The conjugated loss

The conjugated loss is composed of content loss and style loss.

$$\mathbf{x} = \arg\min_{\boldsymbol{\theta}} \alpha \mathscr{L}_{\mathcal{C}}(\boldsymbol{\theta}, \mathbf{x}_{c}) + \beta \mathscr{L}_{\mathcal{S}}(\boldsymbol{\theta}, \mathbf{x}_{s}).$$
(3)

The content loss

The style loss is from feature maps of all layers.

$$\mathscr{L}_{s} = \sum_{l} w_{l} \|\mathscr{G}^{(l)}(\boldsymbol{\theta}) - \mathscr{G}^{(l)}(\boldsymbol{\mathbf{x}}_{s})\|_{2}^{2},$$

$$\mathscr{G}^{(l)}(\boldsymbol{\mathbf{x}})_{ij} = \frac{1}{K} \sum_{k} \mathscr{F}^{(l)}(\boldsymbol{\mathbf{x}})_{ik} \mathscr{F}^{(l)}(\boldsymbol{\mathbf{x}})_{jk}.$$
(4)

Style Transfer Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [3]

- Site
- Set-invariant network
- Style Transfer
- Theory Results
- Semisupervised learning
- Reference

Figure 4: Architecture of normalization method.

- Use a pre-trained auto-encoder network. Fix the encoder while train the decoder.
- Replace the mean and std. value of the encoded content features with that of the style features.
- The mean and std value is calculated by instance normalization.

Style Transfer Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

The net layer specification

The loss function is also composed of content loss and style loss. We use Θ_D to represent the parameters of the decoder.

$$\arg\min_{\boldsymbol{\Theta}_{D}} \mathscr{L}_{c}(\mathbf{x}_{c}, \mathbf{x}_{s}, \boldsymbol{\Theta}_{D}) + \lambda \mathscr{L}_{s}(\mathbf{x}_{c}, \mathbf{x}_{s}, \boldsymbol{\Theta}_{D}).$$
(5)

The content loss

$$\mathscr{L}_{c} = \|\boldsymbol{E}(\boldsymbol{D}(\hat{\mathbf{y}})) - \hat{\mathbf{y}}\|_{2}^{2}.$$
 (6)

 $\hat{\boldsymbol{y}}$ is the encoded features whose mean and std. get replaced by that of the encoded style features.

$$\hat{\mathbf{y}} = \sigma(E(\mathbf{x}_s)) \left(\frac{E(\mathbf{x}_c) - \mu(E(\mathbf{x}_c))}{\sigma(E(\mathbf{x}_c))} \right) + \mu(E(\mathbf{x}_s)). \tag{7}$$

Results Semisupervised

Set-invariant

network Style Transfer

Site

supervise learning

Style Transfer Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

The net layer specification

The loss function is also composed of content loss and style loss. We use Θ_D to represent the parameters of the decoder.

$$\arg\min_{\boldsymbol{\Theta}_D} \mathscr{L}_{\boldsymbol{c}}(\boldsymbol{x}_{\boldsymbol{c}}, \, \boldsymbol{x}_{\boldsymbol{s}}, \, \boldsymbol{\Theta}_D) + \lambda \mathscr{L}_{\boldsymbol{s}}(\boldsymbol{x}_{\boldsymbol{c}}, \, \boldsymbol{x}_{\boldsymbol{s}}, \, \boldsymbol{\Theta}_D).$$

The style loss

$$\mathscr{L}_{s} = \sum_{l} \|\mu(E^{(l)}(D(\hat{\mathbf{y}}))) - \mu(E^{(l)}(\mathbf{x}_{s}))\|_{2}^{2} + \sum_{l} \|\sigma(E^{(l)}(D(\hat{\mathbf{y}}))) - \sigma(E^{(l)}(\mathbf{x}_{s}))\|_{2}^{2}.$$
(6)

(5)

Style Transfer Universal Style Transfer via Feature Transforms [4]

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Figure 5: WCT architecture.

- Use pre-trained and fixed auto-encoder network to extract the feature.
- Perform the Whitening and Coloring Transformation (WCT) on features to get style converted.

Universal Style Transfer via Feature Transforms

Features

Site

Set-invariant network

Style Transfer

Theory Results

Semisupervised learning

Reference

Use mean shifted features and decompose its covariance matrix.

$$\mathbf{y} = \mathbf{E}^{(l)}(\mathbf{x}) - \mu(\mathbf{E}^{(l)}(\mathbf{x})), \qquad \mathbf{y}\mathbf{y}^{T} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T}.$$
(7)

The whitening transformation

Remove the style feature by whitening.

$$\hat{\mathbf{y}}_c = \mathbf{Q}_c \mathbf{\Lambda}_c^{-\frac{1}{2}} \mathbf{Q}_c^T \mathbf{y}_c.$$
(8)

The coloring transformation

Add the style feature by coloring.

$$\mathbf{y} = \mathbf{Q}_{s} \mathbf{\Lambda}_{s}^{rac{1}{2}} \mathbf{Q}_{s}^{T} \hat{\mathbf{y}}_{c}.$$

(9)

Style Transfer Results

Site

Set-invariant network

Style Transfer Theory Results

Semisupervised learning

Reference

Figure 6: Using different layers' features to perform WCT.

Style Transfer Results

- Site
- Set-invariant network
- Style Transfer Theory Results
- Semisupervised learning
- Reference

Figure 6: Compare the performance of style transferring methods.

Outline

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory Results

Reference

Site

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

Semi-supervised learning

- Theory
- Results

Semi-supervised learning Spatial Transformer Networks [5]

- Set-invariant network
- Style Transfer
- Semisupervised learning
- Theory
- Reference

Figure 7: Differentiable image warp method.

- Propose a differentiable interpolation method for image warping.
- Extend the affine transformation method.

Semi-supervised learning Spatial Transformer Networks

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory

Reference

Affine transformation

Use mean shifted features and decompose its covariance matrix.

$$\begin{pmatrix} \hat{x}_{ij} \\ \hat{y}_{ij} \end{pmatrix} = \mathbf{W}_{ij} \begin{pmatrix} x_{ij} \\ y_{ij} \end{pmatrix} = \begin{bmatrix} u_{ij} & 0 \\ 0 & v_{ij} \end{bmatrix} \begin{pmatrix} x_{ij} \\ y_{ij} \end{pmatrix} = \begin{pmatrix} x_{ij} + u_{ij} \\ y_{ij} + v_{ij} \end{pmatrix}$$
(10)

Differentiable Warp

$$\mathbf{I}_{warp}(x_{ij}, y_{ij}, t) = \sum_{h=1}^{H} \sum_{w=1}^{W} \mathbf{I}(h, w, t+1) \mathbf{M}(1 - |\hat{x}_{ij} - w|) \mathbf{M}(1 - |\hat{y}_{ij} - h|),$$
(11)

where $M(\cdot) = max(0, \cdot)$.

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness [6]

- Set-invariant network
- Style Transfer
- Semisupervised learning
- Theory
- Reference

Figure 8: FlowNet architecture.

- The baseline network is auto-encoder.
- Each layer of the decoder is optimized to the prediction flow in different scale.
- The flow is optimized for both photometric target and smoothness.

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory

Reference

The whole loss

The loss function is composed of photometric loss and smoothness loss. We use D_l^{Cn} represent the n^{th} channel of the I^{th} layer of the up-sampling features (decoder output).

$$\mathscr{L}_{\text{total}} = \sum_{l} \ell_{p}(\mathbf{u}, \mathbf{v}, \mathbf{I}(t), \mathbf{I}(t+1)) + \lambda \ell_{s}(\mathbf{u}, \mathbf{v}) \big|_{\mathbf{u} = D_{l}^{C1}, \mathbf{v} = D_{l}^{C2}}$$
(12)

The photometric loss

The photometric loss is used to control the warp error between real frame and predicted (interpolated) frame.

$$\ell_{\rho} = \sum_{xy} \rho_{D}(\mathbf{I}(t) - \mathbf{I}_{warp}(t)).$$
(13)

Set-invariant

network

Reference

Style Transfer Semisupervised learning Theory

Site

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

The whole loss

The loss function is composed of photometric loss and smoothness loss. We use D_l^{Cn} represent the *n*th channel of the *I*th layer of the up-sampling features (decoder output).

$$\mathscr{L}_{\text{total}} = \sum_{l} \ell_{p}(\mathbf{u}, \mathbf{v}, \mathbf{I}(t), \mathbf{I}(t+1)) + \lambda \ell_{s}(\mathbf{u}, \mathbf{v}) \big|_{\mathbf{u} = D_{l}^{C1}, \mathbf{v} = D_{l}^{C2}}$$
(12)

The smoothness loss

The smooth loss is used to reduce the roughness of the flow prediction.

$$\ell_{s} = \sum_{xy} \left[\rho_{S} \left(\frac{\partial \mathbf{u}}{\partial x} \right) + \rho_{S} \left(\frac{\partial \mathbf{u}}{\partial y} \right) + \rho_{S} \left(\frac{\partial \mathbf{v}}{\partial x} \right) + \rho_{S} \left(\frac{\partial \mathbf{v}}{\partial y} \right) \right]. \quad (13)$$

Semi-supervised learning Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks [7]

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory Results

Reference

Figure 9: GAN based learning architecture.

- Only use labeled data to train the discriminator.
- Use both labeled and unlabeled data to train the generator.
- Use the warp loss from the previous to realize the unsupervised learning part.

Set-invariant

network

Reference

Style Transfer Semisupervised learning Theory

Site

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

The whole loss

The loss function is composed of a supervised learning loss (\mathscr{L}_s) and an adversarial loss (\mathscr{L}_a). We use *G* and *D* to denote the generator and discriminator respectively.

$$\min_{G} \max_{D} \mathscr{L}_{\mathcal{S}}(G) + \lambda \mathscr{L}_{a}(G, D).$$
(14)

The discriminator loss

When training the discriminator, we reduce the warp loss which comes from $\hat{\mathbf{y}} = \mathbf{I}_t - \mathcal{W}(\mathbf{I}_{t+1}, \mathbf{g})$ and $\mathbf{y} = \mathbf{I}_t - \mathcal{W}(\mathbf{I}_{t+1}, \mathbf{g}_0)$, where we use \mathcal{W} to represent the mentioned differentiable warping. We use predicted flow to get $\hat{\mathbf{y}}$ and ground truth to get \mathbf{y} .

$$\mathscr{L}_{a}^{D}(\mathbf{I}_{t}, \mathbf{I}_{t+1}, \mathbf{g}_{0}) = -\log D(\hat{\mathbf{y}}) - \log(1 - D(\mathbf{y})).$$
(15)

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory Results

Reference

The whole loss

The loss function is composed of a supervised learning loss (\mathcal{L}_s) and an adversarial loss (\mathcal{L}_a). We use *G* and *D* to denote the generator and discriminator respectively.

$$\min_{G} \max_{D} \mathscr{L}_{s}(G) + \lambda \mathscr{L}_{a}(G, D).$$

The generator loss (supervised)

When we use labeled data to optimize the generator, the supervised learning loss contains a loss from ground truth and an adversarial loss.

$$\mathscr{L}_{\sup}^{G} = \|G(\mathbf{I}_{t}, \mathbf{I}_{t+1}) - \mathbf{g}_{0}\|_{F} - \lambda \log D(\hat{\mathbf{y}}).$$
(15)

(14)

Semi-supervised learning

Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness

Site

Set-invariant network

Style Transfer

Semisupervised learning

Theory Results

Reference

The whole loss

The loss function is composed of a supervised learning loss (\mathcal{L}_s) and an adversarial loss (\mathcal{L}_a). We use *G* and *D* to denote the generator and discriminator respectively.

$$\min_{G} \max_{D} \mathscr{L}_{s}(G) + \lambda \mathscr{L}_{a}(G, D).$$
(14)

The generator loss (unsupervised)

When we use unlabeled data to optimize the generator, The unsupervised learning loss only contains an adversarial loss.

$$\mathscr{L}_{\sup}^{G} = -\lambda \log D(\hat{\mathbf{y}}). \tag{15}$$

Semi-supervised learning Results

0		
-	IT	ρ
-		u

Set-invariant network

Style Transfer

Semisupervised learning

Results

Reference

Figure 10: Numerical comparison among different methods.

Figure 11: Illustrated comparison among different methods.

Outline

Site

Set-invariant network

Style Transfer

Semisupervised learning

Reference

Set-invariant network

- Theory
- Results

Style Transfer

- Theory
- Results

- Theory
- Results

Reference I

Site

Set-invariant network

Style Transfer

Semisupervised learning

- M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, and A. J. Smola, "Deep sets," *CoRR*, vol. abs/1703.06114, 2017. [Online]. Available: http://arxiv.org/abs/1703.06114
- L. A. Gatys, A. S. Ecker, and M. Bethge, "Image style transfer using convolutional neural networks," in *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016, pp. 2414–2423.
- X. Huang and S. Belongie, "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization," *ArXiv e-prints*, Mar. 2017.
- Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu, and M.-H. Yang, "Universal Style Transfer via Feature Transforms," *ArXiv e-prints*, May 2017.
- M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, "Spatial Transformer Networks," *ArXiv e-prints*, Jun. 2015.

Reference II

Site

Set-invariant network

Style Transfer

Semisupervised learning

Reference

J. J. Yu, A. W. Harley, and K. G. Derpanis, "Back to Basics: Unsupervised Learning of Optical Flow via Brightness Constancy and Motion Smoothness," *ArXiv e-prints*, Aug. 2016.

W.-S. Lai, J.-B. Huang, and M.-H. Yang, "Semi-supervised learning for optical flow with generative adversarial networks," in *Advances in Neural Information Processing Systems 30*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 354–364. [Online]. Available: http://papers.nips.cc/paper/ 6639-semi-supervised-learning-for-optical-flow-with-generative-advers pdf