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Personal site is ready

My personal site is ready during the two weeks.
The DGX Work Station is ready. We have equipped it
with Matlab, Tensorflow and Docker. To be specific, I
have written to tutorials for it:

• How to access to the DGX server: Basic Linux Skills for
Remote Controlling. Check it!

• How to manage the installed packages: Advanced
Linux Skills for Using NVIDIA Docker. Check it!

A detailed version of this note could be seen here:
Check it!

May 26 - 4 - University of Houston

https://cainmagi.github.io/playground/20180531linuxdocker/
https://cainmagi.github.io/playground/20180526linuxskill/
https://cainmagi.github.io/notes/note20180526/
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Set-invariant network
Deep Sets [1]
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Figure 1: Deep Sets architecture.

Stacked structure by repeating the set-invariant layer.
Each layer accepts a input set and give the corresponding
output set.
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Set-invariant network
Deep Sets

The net layer specification
Use a diagonal kernel ΓΓΓ and a bias vector βββ to define a layer.

F (x, ΓΓΓ, βββ ) = σ (βββ +(x−1 ·maxpool(x))ΓΓΓ) . (1)

The probability view
This layer could be viewed by deducing the de Finetti’s Theorem.
We use X to represent the input set, θ is the latent feature and
α, M0 are the hyper-parameters of the prior.

p(X|α, M0) =
∫ [

M

∏
m=1

p(xm|θ)

]
p(θ |α, M0)dθ

= eh(α+ϕ(X), M+M0)−h(α, M0).

(2)
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Set-invariant network
Results
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Figure 2: Result of the set-invariant classification.
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Style Transfer
Image Style Transfer Using Convolutional Neural Networks [2]
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Figure 3: Architecture of optimization method.

Use a pre-trained and fixed network to extract features.
Use Gramian matrix (pre-defined method) to extract the
texture features.
Optimize the input image to reduce the conjugated loss
function.
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Style Transfer
Image Style Transfer Using Convolutional Neural Networks

The conjugated loss
The conjugated loss is composed of content loss and style loss.

x = argmin
θθθ

αLc(θθθ , xc)+βLs(θθθ , xs). (3)

The content loss
The content loss is from the output of one layer (we use F (l) to
represent the output features of the l th layer).

Lc = ∥F (L)(θθθ)−F (L)(xc)∥2
2. (4)

May 26 - 11 - University of Houston
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Style Transfer
Image Style Transfer Using Convolutional Neural Networks

The conjugated loss
The conjugated loss is composed of content loss and style loss.

x = argmin
θθθ

αLc(θθθ , xc)+βLs(θθθ , xs). (3)

The content loss
The style loss is from feature maps of all layers.

Ls = ∑
l

wl∥G (l)(θθθ)−G (l)(xs)∥2
2,

G (l)(x)ij =
1
K ∑

k
F (l)(x)ikF (l)(x)jk .

(4)

May 26 - 11 - University of Houston
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Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization [3]

Figure 4: Architecture of normalization method.

Use a pre-trained auto-encoder network. Fix the encoder
while train the decoder.
Replace the mean and std. value of the encoded content
features with that of the style features.
The mean and std value is calculated by instance
normalization.
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Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization

The net layer specification
The loss function is also composed of content loss and style loss.
We use ΘΘΘD to represent the parameters of the decoder.

argmin
ΘΘΘD

Lc(xc , xs, ΘΘΘD)+λLs(xc , xs, ΘΘΘD). (5)

The content loss

Lc = ∥E(D(ŷ))− ŷ∥2
2. (6)

ŷ is the encoded features whose mean and std. get replaced by
that of the encoded style features.

ŷ = σ(E(xs))

(
E(xc)−µ(E(xc))

σ(E(xc))

)
+µ(E(xs)). (7)

May 26 - 13 - University of Houston
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Style Transfer
Arbitrary Style Transfer in Real-time with Adaptive Instance
Normalization

The net layer specification
The loss function is also composed of content loss and style loss.
We use ΘΘΘD to represent the parameters of the decoder.

argmin
ΘΘΘD

Lc(xc , xs, ΘΘΘD)+λLs(xc , xs, ΘΘΘD). (5)

The style loss

Ls = ∑
l
∥µ(E (l)(D(ŷ)))−µ(E (l)(xs)∥2

2

+∑
l
∥σ(E (l)(D(ŷ)))−σ(E (l)(xs))∥2

2.
(6)

May 26 - 13 - University of Houston
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Style Transfer
Universal Style Transfer via Feature Transforms [4]

Figure 5: WCT architecture.

Use pre-trained and fixed auto-encoder network to extract
the feature.
Perform the Whitening and Coloring Transformation (WCT)
on features to get style converted.

May 26 - 14 - University of Houston
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Style Transfer
Universal Style Transfer via Feature Transforms

Features
Use mean shifted features and decompose its covariance matrix.

y = E (l)(x)−µ(E (l)(x)), yyT = QΛΛΛQT . (7)

The whitening transformation
Remove the style feature by whitening.

ŷc = QcΛΛΛ
− 1

2
c QT

c yc . (8)

The coloring transformation
Add the style feature by coloring.

y = QsΛΛΛ
1
2
s QT

s ŷc . (9)

May 26 - 15 - University of Houston
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Style Transfer
Results

(a) Style (b) Relu_1_1 (c) Relu_2_1 (d) Relu_3_1 (e) Relu_4_1 (f) Relu_5_1

(g) I5 (h) I4 (i) I1 (j) Fine-to-coarse

Figure 6: Using different layers’ features to perform WCT.
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Style Transfer
Results

(a) Style (b) [3] (c) [15] (d) [27] (e) [9] (f) Ours

Figure 6: Compare the performance of style transferring methods.
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Semi-supervised learning
Spatial Transformer Networks [5]

I(t) Iwarp(t+ 1)

Figure 7: Differentiable image warp method.

Propose a differentiable interpolation method for image
warping.
Extend the affine transformation method.
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Semi-supervised learning
Spatial Transformer Networks

Affine transformation
Use mean shifted features and decompose its covariance matrix.(

x̂ij
ŷij

)
= Wij

(
xij
yij

)
=

[
uij 0
0 vij

](
xij
yij

)
=

(
xij +uij
yij +vij

)
(10)

Differentiable Warp

Iwarp(xij , yij , t) =
H

∑
h=1

W

∑
w=1

I(h, w , t +1)M(1−|x̂ij −w |)M(1−|ŷij −h|),
(11)

where M(·) = max(0, ·).
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness [6]

Figure 8: FlowNet architecture.

The baseline network is auto-encoder.
Each layer of the decoder is optimized to the prediction flow
in different scale.
The flow is optimized for both photometric target and
smoothness.

May 26 - 20 - University of Houston
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss
The loss function is composed of photometric loss and
smoothness loss. We use DCn

l represent the nth channel of the l th

layer of the up-sampling features (decoder output).

Ltotal = ∑
l
ℓp(u, v, I(t), I(t +1))+λℓs(u, v)

∣∣
u=DC1

l , v=DC2
l

. (12)

The photometric loss
The photometric loss is used to control the warp error between
real frame and predicted (interpolated) frame.

ℓp = ∑
xy

ρD(I(t)− Iwarp(t)). (13)

May 26 - 21 - University of Houston
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss
The loss function is composed of photometric loss and
smoothness loss. We use DCn

l represent the nth channel of the l th

layer of the up-sampling features (decoder output).

Ltotal = ∑
l
ℓp(u, v, I(t), I(t +1))+λℓs(u, v)

∣∣
u=DC1

l , v=DC2
l

. (12)

The smoothness loss
The smooth loss is used to reduce the roughness of the flow
prediction.

ℓs = ∑
xy

[
ρS

(
∂u
∂x

)
+ρS

(
∂u
∂y

)
+ρS

(
∂v
∂x

)
+ρS

(
∂v
∂y

)]
. (13)
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Semi-supervised learning
Semi-Supervised Learning for Optical Flow with Generative
Adversarial Networks [7]

Figure 9: GAN based learning architecture.

Only use labeled data to train the discriminator.
Use both labeled and unlabeled data to train the generator.
Use the warp loss from the previous to realize the
unsupervised learning part.
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss
The loss function is composed of a supervised learning loss (Ls)
and an adversarial loss (La). We use G and D to denote the
generator and discriminator respectively.

min
G

max
D

Ls(G)+λLa(G, D). (14)

The discriminator loss
When training the discriminator, we reduce the warp loss which
comes from ŷ = It −W (It+1, g) and y = It −W (It+1, g0), where
we use W to represent the mentioned differentiable warping. We
use predicted flow to get ŷ and ground truth to get y.

L D
a (It , It+1, g0) =− logD(ŷ)− log(1−D(y)). (15)

May 26 - 23 - University of Houston
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss
The loss function is composed of a supervised learning loss (Ls)
and an adversarial loss (La). We use G and D to denote the
generator and discriminator respectively.

min
G

max
D

Ls(G)+λLa(G, D). (14)

The generator loss (supervised)
When we use labeled data to optimize the generator, the
supervised learning loss contains a loss from ground truth and an
adversarial loss.

L G
sup = ∥G(It , It+1)−g0∥F −λ logD(ŷ). (15)

May 26 - 23 - University of Houston
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Semi-supervised learning
Back to Basics: Unsupervised Learning of Optical Flow via
Brightness Constancy and Motion Smoothness

The whole loss
The loss function is composed of a supervised learning loss (Ls)
and an adversarial loss (La). We use G and D to denote the
generator and discriminator respectively.

min
G

max
D

Ls(G)+λLa(G, D). (14)

The generator loss (unsupervised)
When we use unlabeled data to optimize the generator, The
unsupervised learning loss only contains an adversarial loss.

L G
sup =−λ logD(ŷ). (15)

May 26 - 23 - University of Houston
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Semi-supervised learning
Results

Method Training Datasets Sintel-Clean Sintel-Final KITTI 2012 KITTI 2015 FlyingChairs
EPE EPE EPE EPE Fl EPE

Chairs 3.51 4.70 7.69 17.19 40.82% 2.15
KITTI 8.01 8.97 16.54 25.53 54.40% 6.66

Chairs + KITTI 3.69 4.86 10.38 18.07 39.33% 2.11

Supervised
Unsupervised

Baseline semi-supervised
Proposed semi-supervised Chairs + KITTI 3.30 4.68 7.16 16.02 38.77% 1.95

Figure 10: Numerical comparison among different methods.

Input images Unsupervised Supervised

Ground truth flow Baseline semi-supervised Proposed semi-supervised

Example 1

Ground truth Baseline semi-supervised Proposed semi-supervised

Example 2

Figure 11: Illustrated comparison among different methods.
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