Weekly Report I: recent paper review

YUCHEN JIN Dept. of ECE University of Houston

2 Reviews

- Derivation of LMA
- Proof of Lovasz extension
- Conjugate gradient descent
- Decentralized FrankWolfe algorithm
- Improved LISTA

3 Reference

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Recent works:

- Finish two articles on my site.
 - 1 note20180824special: Derivation of LMA.
 - 2 note20181129special: Derivation of Lovasz extension [1].
- Read three papers roughly.
 - 1 About conjugate gradient descent (propose a new coefficient) [2].
 - 2 About decentralized FrankWolfe algorithm [3].
 - 3 About an improvement of LISTA (faster convergence) [4].

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

2 Reviews

- Derivation of LMA
- Proof of Lovasz extension
- Conjugate gradient descent
- Decentralized FrankWolfe algorithm
- Improved LISTA

3 Reference

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Derivation of LMA

Assume we have $g(\mathbf{f}(\mathbf{x}))$, where $\mathbf{z} = \mathbf{f}(\mathbf{x})$.

Expansion for function $g(\cdot)$ **.**

$$g(\mathsf{z}+\Delta\mathsf{z})-g(\mathsf{z})pprox
abla g^{\mathsf{T}}(\mathsf{z})\Delta\mathsf{z}+rac{1}{2}\Delta\mathsf{z}^{\mathsf{T}}\mathsf{H}(g)\Delta\mathsf{z},$$

Su

- The problem is $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} ||\mathbf{y} - \mathbf{f}(\mathbf{x})||^2.$
- Let z get first-order expansion: $\Delta z = \frac{\partial f}{\partial x} \Delta x = J(f) \Delta x.$ $a(x + \Delta x) - g(x)$

Finally we get
$$\frac{g(\mathbf{x} + \Delta \mathbf{x}) - g(\mathbf{x})}{\Delta \mathbf{x}} \approx \Delta \mathbf{x}^T \mathbf{J}^T \mathbf{J} - 2(\mathbf{y} - \mathbf{f}(\mathbf{x}))^T \mathbf{J} = 0..$$

b problem's params into (1).

$$g(\mathbf{z}) = \|\mathbf{y} - \mathbf{z}\|^2,$$

$$\mathbf{z} = \mathbf{f}(\mathbf{x}),$$

$$\nabla g^T(\mathbf{z}) = -2(\mathbf{y} - \mathbf{z})^T, \quad (2)$$

$$\mathbf{H}(g) = 2\mathbf{I},$$

$$\mathbf{J}(\mathbf{f}) := \mathbf{J},$$

Introduction

Reviews

Derivation of LMA

Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Reference

(1)

Proof of Lovasz extension

The Lovťasz-Softmax loss: A tractable surrogate ... [1]

Algorithm 1 Gradient of the Jaccard loss extension $\overline{\Delta_{J_c}}$

Inputs: vector of errors $m(c) \in \mathbb{R}_{+}^{p}$ class foreground pixels $\delta = \{y^{*} = c\} \in \{0, 1\}^{p}$ Output: g(m) gradient of $\overline{\Delta}_{J_{c}}$ (Equation (9)) 1: $\pi \leftarrow \text{decreasing sort permutation for } m$ 2: $\delta_{\pi} \leftarrow (\delta_{\pi_{i}})_{i \in [1,p]}$ 3: intersection $\leftarrow \text{sum}(\delta) - \text{cumulative_sum}(\delta_{\pi})$ 4: union $\leftarrow \text{sum}(\delta) + \text{cumulative_sum}(1 - \delta_{\pi})$ 5: $g \leftarrow 1 - \text{intersection/union}$ 6: if p > 1 then 7: $g[2: p] \leftarrow g[2: p] - g[1: p - 1]$ 8: end if 9: return g_{-1}

- The primal Jaccard index: $\Delta_c(\hat{\mathbf{y}}, \ \mathbf{y}^*) = \frac{|\mathbf{M}_c|}{|\{\mathbf{y}^* = c\} \cup \mathbf{M}_c|}.$
- The Jaccard index in algorithm: $\Delta_{cAlg} = \frac{S1}{\sum(\delta) + S(1 - \delta)}.$
- Lovasz extension:

$$\bar{\Delta}_c = \sum_{i=1}^{p} m_{\pi_i} g_{\pi_i}.$$

For the index (i) of δ , exist I,

• When
$$i \leq l, m_{\pi_i} = 1, \Delta_c = \Delta_{cAlg}$$
;

• When
$$i > I$$
, $m_{\pi_i} = 0$, $\Delta_c \neq \Delta_{cAlg}$.

Introduction

Reviews

Derivation of LMA

Proof of Lovasz extension

Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Proof of Lovasz extension The Lovfasz-Softmax loss: A tractable surrogate ... [1]

Introduction

Reviews

0.45

0.45

0.4

0.4

0.35

0,0

Derivation of LMA

Proof of Lovasz extension

Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Reference

Figure: An example of the primal function of Δ .

Figure: Compare the Lovasz extensions from algorithm and theory.

0.5

3 (original)

To solve $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} f(\mathbf{x})$, the algorithm is:

- 1 Initialize the input parameter $\mathbf{x}_0, k = 0$.
- **2** Calculate first-order gradient $\mathbf{g}_k = \nabla f(\mathbf{x}_k)$.
- 3 Compute β_k which is the conjugate gradient coefficient.
- 4 Update descent direction: when k = 0, let $\mathbf{d}_k = \mathbf{q}_k$; when k > 0, $\mathbf{d}_k = -\mathbf{q}_k + \beta_k \mathbf{d}_{k-1}$.
- **5** Use line search to find the best update parameter: $\alpha_k = \arg \min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$.
- 6 Let $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$. If $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ and $\|\mathbf{g}_k\| < \varepsilon$, stop; otherwise get back to step 2.

The author proposes a new coefficient that

$$\beta_k^{\mathsf{RMF}} = \frac{\mathbf{g}_k'(\mathbf{g}_k - \mathbf{g}_{k-1})}{\|\mathbf{d}_{k-1}\|^2}.$$

Give the proof that

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \leq -\frac{1}{9L} \frac{(\mathbf{g}_k^T \mathbf{d}_k)^2}{\|\mathbf{d}_k\|}, \text{ then we have } \\\lim_{k \to \infty} \|\mathbf{g}_k\| = 0.$$

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorith

Decentralized FrankWolfe Algorithm Decentralized FrankWolfe Algorithm for Convex and Nonconvex Problems [3]

To solve $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}\in\mathcal{D}}\sum_{i} f_i(\mathbf{x})$, suppose that $\sum_{j} W_{ij} = 1$ for each *i*, the algorithm is:

- For each agent, calculate the local average iterate among its neighbor: $\bar{\mathbf{x}}_i = \sum_i W_{ij} \mathbf{x}_j$, where W_{ij} is an element of the adjacent matrix.
- **2** For each agent, calculate the local average gradient among its neighbor: $\overline{\nabla F}_i = \sum_i W_{ij} \nabla f_j(\mathbf{x}_j).$
- 3 Let $\alpha_i = \arg \min_{\alpha_i \in \mathcal{D}} \alpha_i^T \overline{\nabla F}_i$.
- **4** Update iterate: $\mathbf{x}_{i+1} = (1 \gamma) \bar{\mathbf{x}}_i + \gamma \alpha_i$.

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent

Decentralized FrankWolfe algorithm

Improved LISTA

- Compare to conventional FW algorithm, DeFW could solve a combination of convex functions f_i with multiple agents and parallel computing.
- The author has proved that the local average with matrix **W** could serve as a global average by convergence. Denote the real average of any θ_i is θ_a :

• For any
$$\bar{\theta}_i = \sum_j W_{ij}\theta_j$$
, $\sum_{i=1}^N ||\bar{\theta}_i - \theta_a||^2 \leq |\lambda_2(\mathbf{W})|^2 \sum_{i=1}^N ||\theta_i - \theta_a||^2$.
• $\lambda_2(\mathbf{W}) \leq \left(\frac{t_0(\alpha)}{t_0(\alpha) + 1}\right)^{\alpha} \frac{1}{1 + t_0^{-\alpha}(\alpha)}$, where λ_2 is the 2nd largest eigenvalue
• $\max_i ||\bar{\mathbf{x}}_i - \mathbf{x}_a|| = \frac{1}{t^{\alpha}} C_p$, where $C_p = t_0^{\alpha}(\alpha) \sqrt{N}\bar{\rho}$.
• $\max_i ||\overline{\nabla F}_i - \overline{\nabla F}_a|| = \frac{1}{t^{\alpha}} t_0^{\alpha}(\alpha) 2\sqrt{N} (2C_p + \bar{\rho}) L$.

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Improved LISTA Theoretical Linear Convergence of Unfolded ... [4]

Figure: The LISTA network structure.

- The network is inspired from an algorithm, to learn more, please check . note20180813special: ISTA and AMP.
- ISTA is used to solve "sparse inverse problem":
 - $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|.$
- The basic form of the layer is $\mathbf{x}_{k+1} = \eta(\mathbf{W}_{k1}\mathbf{b} + \mathbf{W}_{k2}\mathbf{x}_k, \theta_k)$
- $\eta(\cdot, \theta)$ is the soft thresholding function.

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm

- The improvement for partial weight coupling (LISTA-CP):
 - The author prove that to let x_k converges, we need to have W_{k2} = I - W_{k1}A.
 - Thus the layer need to be adapted to

 $\mathbf{x}_{k+1} = \eta(\mathbf{x}_k \mathbf{W}_k^T (\mathbf{b} - \mathbf{A} \mathbf{x}_k), \theta_k).$

■ LISTA-CP could converge to $||\mathbf{x}_k - \mathbf{x}^*|| \leq sB \exp(ck) + C\sigma.$

- The improvement for support selection technique (LISTA-SS): The thresholding function would be adapted as η_{ss}(v_k, θ_k, S_k), where v_k = W_{k1}b + W_{k2}x_k.
- First, sort all the values v_k that need to be threshold, the largest p_k values would remains in set S_k.
 - $\mathbf{v}_k \in \mathbb{S}_k$, use hard thresholding as η_{ss} .
 - $\mathbf{v}_k \notin \mathbb{S}_k$, use soft thresholding as η_{ss} .
- LISTA-CPSS could converge to $||\mathbf{x}_k - \mathbf{x}^*|| \leq sB \exp(-\sum_{t=0}^{k-1} c_{ss}^t) + C_{ss}\sigma,$ where $c_{ss}^t \geq c$ but $C_{ss} \leq C$.

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Improved LISTA Theoretical Linear Convergence of Unfolded ... [4]

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Reference

Figure: The performance of LISTA.

2 Reviews

- Derivation of LMA
- Proof of Lovasz extension
- Conjugate gradient descent
- Decentralized FrankWolfe algorithm
- Improved LISTA

3 Reference

Introduction

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

- M. Berman and M. B. Blaschko, "Optimization of the jaccard index for image segmentation with the lovász hinge," *CoRR*, vol. abs/1705.08790, 2017. [Online]. Available: http://arxiv.org/abs/1705.08790
- M. Rivaie, M. Fauzi, and M. Mamat, "A new family of conjugate gradient methods for unconstrained optimization," in 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, April 2011, pp. 1–4.
- H. Wai, J. Lafond, A. Scaglione, and E. Moulines, "Decentralized frankwolfe algorithm for convex and nonconvex problems," *IEEE Transactions on Automatic Control*, vol. 62, no. 11, pp. 5522–5537, Nov 2017.
- X. Chen, J. Liu, Z. Wang, and W. Yin, "Theoretical linear convergence of unfolded ista and its practical weights and thresholds," in *Advances in Neural Information Processing Systems 31*, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 9079–9089.

Reviews

Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Thank you for listening! IT'S TIME FOR Q&A.