Weekly Report I: recent paper review

YUCHEN JIN *Dept. of ECE University of Houston*

Outline

1 Introduction 2 Reviews Derivation of LMA Proof of Lovasz extension **Conjugate gradient descent** Decentralized FrankWolfe algorithm **Improved LISTA** 3 Reference

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Introduction

Recent works:

- \blacksquare Finish two articles on my site.
	- 1 note20180824special: Derivation of LMA.
	- 2 note20181129special: Derivation of Lovasz extension [1].
- \blacksquare Read three papers roughly.
	- 1 About conjugate gradient descent (propose a new coefficient) [2].
	- 2 About decentralized FrankWolfe algorithm [3].
	- 3 About an improvement of LISTA (faster convergence) [4].

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Outline

1 Introduction

2 Reviews

- Derivation of LMA
- Proof of Lovasz extension
- Conjugate gradient descent
- Decentralized FrankWolfe algorithm
- **Improved LISTA**

3 Reference

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Derivation of LMA

Assume we have $g(f(x))$ **, where** $z = f(x)$ **.**

Expansion for function *g*(*·*)**.**

$$
g(\mathbf{z} + \Delta \mathbf{z}) - g(\mathbf{z}) \approx \nabla g^{T}(\mathbf{z}) \Delta \mathbf{z} + \frac{1}{2} \Delta \mathbf{z}^{T} \mathbf{H}(g) \Delta \mathbf{z},
$$
 (1)

Yuchen Jin Niversity of Houston 1st February, 2019 5/16

The problem is $\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} ||\mathbf{y} - \mathbf{f}(\mathbf{x})||^2.$ Let **z** get first-order expansion: Δ **z** = $\frac{\partial f}{\partial x}$ $\frac{\partial}{\partial x}$ ∆**x** = **J**(**f**)∆**x**. Finally we get $\frac{g(\mathbf{x} + \Delta \mathbf{x}) - g(\mathbf{x})}{\Delta \mathbf{x}} \approx$

 $\Delta \mathbf{x}^{\mathsf{T}} \mathsf{J}^{\mathsf{T}} \mathsf{J} - 2(\mathsf{y} - \mathsf{f}(\mathsf{x}))^{\mathsf{T}} \mathsf{J} = 0$.

Sub problem's params into (1). $g(z) = ||y - z||^2$ $z = f(x)$, $\nabla g^T(\mathbf{z}) = -2(\mathbf{y} - \mathbf{z})^T,$ $H(g) = 2I$ $J(f) := J$ (2)

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized Fran Improved LISTA **Reference**

Proof of Lovasz extension The Lovťasz-Softmax loss: A tractable surrogate ... [1]

- Algorithm 1 Gradient of the Jaccard loss extension $\overline{\Delta_{J_c}}$
- **Inputs:** vector of errors $m(c) \in \mathbb{R}^p_+$
class foreground pixels $\boldsymbol{\delta} = {\mathbf{y}^* = c} \in \{0, 1\}^p$ **Output:** $g(m)$ gradient of Δ_{J_c} (Equation (9))
1: $\pi \leftarrow$ decreasing sort permutation for m 2: $\delta_{\pi} \leftarrow (\delta_{\pi_i})_{i \in [1,p]}$
3: intersection ← sum(δ) – cumulative sum(δ_{π})
5: g ← 1 – intersection/union
6: if p > 1 then 7: $g[2:p] \leftarrow g[2:p] - g[1:p-1]$ 8: end if 9: **return** *g*π−1
- The primal Jaccard index: $\Delta_c(\hat{\textbf{y}}, \; \textbf{y}^*) = \frac{|\textbf{M}_c|}{|\{\textbf{y}^*=c\}\cup \textbf{M}_c|}.$ The Jaccard index in algorithm: $\Delta_{c \text{Alg}} = \frac{\textsf{S1}}{\sum(\texttt{S})+\textsf{S}}$ $\frac{\mathbf{C} \cdot \mathbf{C} \cdot \math$ **Lovasz extension:** $\bar{\Delta}_c = \sum_{i=1}^{\rho} m_{\pi_i} g_{\pi_i}.$
- For the index (i) of δ , exist *l*,
	- $\textsf{When } i \leqslant l,\, m_{\pi_i}=1,\,\, \Delta_{\textit{c}}=\Delta_{\textit{cAlg}};$
	- $\textsf{When } i > l, m_{\pi_i} = 0, \ \Delta_c \neq \Delta_{c \text{Alg}}.$

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent ed Fr Improved LISTA **Reference**

Proof of Lovasz extension The Lovťasz-Softmax loss: A tractable surrogate ... [1]

Figure: An example of the primal function of ∆.

Figure: Compare the Lovasz extensions from algorithm and theory.

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Conjugate gradient descent A New Family of Conjugate Gradient Descent ... [2]

- To solve $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} f(\mathbf{x})$, the algorithm is:
	- 1 Initialize the input parameter $\mathbf{x}_0, k = 0$.
	- 2 Calculate first-order gradient $\mathbf{g}_k = \nabla f(\mathbf{x}_k)$.
	- 3 Compute *β^k* which is the conjugate gradient coefficient.
	- 4 Update descent direction: when $k = 0$, let **d**_{*k*} = **g**_{*k*}; when *k* > 0, **d**_{*k*} = −**g**_{*k*} + β _{*k*}**d**_{*k*−1}.
	- 5 Use line search to find the best update parameter: $\alpha_k = \arg \min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$.
	- 6 Let $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$. If $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$ and *∥***g***^k ∥ < ε*, stop; otherwise get back to step 2.
- \blacksquare The author proposes a new coefficient that $\beta_k^{\mathsf{RMF}} = \frac{\boldsymbol{\mathsf{g}}_k^{\mathcal{T}}(\boldsymbol{\mathsf{g}}_k - \boldsymbol{\mathsf{g}}_{k-1})}{\|\boldsymbol{\mathsf{d}}_{k-1}\|}$ *∦k* − **g***k*−1)</sup> ||². Give the proof that $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \leq$

$$
-\frac{1}{9L} \frac{(\mathbf{g}_k^T \mathbf{d}_k)^2}{\|\mathbf{d}_k\|},
$$
 then we have

$$
\lim_{k \to \infty} \|\mathbf{g}_k\| = 0.
$$

Introduction

Reviews Derivation of LMA Proof of Lovasz exte Conjugate gradient descent entralized Frank Improved LISTA

Decentralized FrankWolfe algorithm

Decentralized FrankWolfe Algorithm for Convex and Nonconvex Problems [3]

- To solve $\hat{\mathbf{x}} = \arg \min$ **x***∈D* \sum_{i} *f*_i(**x**), suppose that \sum_{j} $W_{ij} = 1$ for each *i*, the algorithm is:
	- 1 For each agent, calculate the local average iterate among its neighbor: $\bar{\bm{x}}_i = \sum_j \bm{\mathit{W}}_{ij} \bm{x}_j$, where $\bm{\mathit{W}}_{ij}$ is an element of the adjacent matrix.
	- 2 For each agent, calculate the local average gradient among its neighbor: $\nabla F_i = \sum_j W_{ij} \nabla f_j(\mathbf{x}_j).$

Yuchen Jin Nietz Charles Week 1 University of Houston 1st February, 2019 9/16

- 3 Let α_i = arg min $\alpha_i \in \mathcal{D}$ $\alpha_i^{\mathcal{T}}\overline{\nabla}\overline{\mathsf{F}}_i$.
- 4 Update iterate: $\mathbf{x}_{i+1} = (1 \gamma)\mathbf{\bar{x}}_i + \gamma \alpha_i$.

Introduction

Reviews Derivation of LMA Proof of Lovasz exte Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA **Reference**

Decentralized FrankWolfe algorithm

Decentralized FrankWolfe Algorithm for Convex and Nonconvex Problems [3]

- Compare to conventional FW algorithm, DeFW could solve a combination of convex functions *fⁱ* with multiple agents and parallel computing.
- **The author has proved that the local average with matrix W could serve as a** global average by convergence. Denote the real average of any *θⁱ* is *θa*:
	- For any $\bar{\theta}_i = \sum_j W_{ij} \theta_j, \sum_{i=1}^N ||\bar{\theta}_i \theta_a||^2 \leqslant |\lambda_2(\mathsf{W})|^2 \sum_{i=1}^N ||\theta_i \theta_a||^2.$
	- $\lambda_2(\mathsf{W}) \leqslant$ (*t*0(*α*) $t_0(\alpha)+1$)*^α* 1 $\frac{1}{1 + t_0^{-\alpha}(\alpha)}$, where λ_2 is the 2nd largest eigenvalue. *√*

Yuchen Jin Nicolas Controller Week 1 Week 1 University of Houston 1st February, 2019 10 / 16

- $\max_i\lVert\bar{\bm{x}}_i \bm{x}_a\rVert = \frac{1}{t^\alpha}C_p,$ where $C_p = t_0^\alpha(\alpha)\sqrt{N}\bar{\rho}.$ *√*
- $\max_{i} \lVert \overline{\nabla F}_{i} \overline{\nabla F}_{a} \rVert = \frac{1}{t^{\alpha}} t^{\alpha}_{0}(\alpha)$ 2 $N(2C_p + \bar{\rho})L$.

Introduction

Reviews Derivation of LMA Proof of Lovasz extension .
Conjugate gradient descent Decentralized FrankWolfe algorithm

mproved LISTA **Reference**

Improved LISTA Theoretical Linear Convergence of Unfolded ... [4]

Figure: The LISTA network structure.

- The network is inspired from an algorithm, to learn more, please check $\mathcal{\mathfrak{B}}$: note20180813special: ISTA and AMP.
- ISTA is used to solve "sparse inverse problem": $\hat{\mathbf{x}} = \arg \min_{\mathbf{x}}$ 1 $\frac{1}{2}$ ||**y** - **Ax**|| $\frac{2}{2}$ + λ |**x**|.

The basic form of the layer is
$$
\mathbf{x}_{k+1} = \eta(\mathbf{W}_{k1} \mathbf{b} + \mathbf{W}_{k2} \mathbf{x}_k, \theta_k)
$$

 \blacksquare *η*(\cdot , θ) is the soft thresholding function.

Introduction

Reviews Derivation of LMA Proof of Lovasz exte Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Improved LISTA

Theoretical Linear Convergence of Unfolded ... [4]

- \blacksquare The improvement for partial weight coupling (LISTA-CP):
	- The author prove that to let \mathbf{x}_k converges, we need to have $W_{k2} = I - W_{k1}A$.
	- Thus the layer need to be adapted to
		- $\mathbf{x}_{k+1} = \eta(\mathbf{x}_k \mathbf{W}_k^T(\mathbf{b} \mathbf{A}\mathbf{x}_k), \theta_k).$
- **LISTA-CP** could converge to $||\mathbf{x}_k - \mathbf{x}^*|| \leqslant sB \exp(ck) + C\sigma.$
- The improvement for support selection technique (LISTA-SS): The thresholding function would be adapted as $\eta_{ss}(\mathbf{v}_k, \theta_k, \mathbb{S}_k)$, where

v_{*k*} = **W**_{*k*1}**b** + **W**_{*k*2}**x**_{*k*}.

- **First, sort all the values** v_k **that need to** be threshold, the largest p_k values would remains in set S*^k* .
	- **v***^k ∈* S*^k* , use hard thresholding as *ηss*.
	- **v***^k ∈/* S*^k* , use soft thresholding as *ηss*.
- **LISTA-CPSS could converge to** $||\mathbf{x}_k - \mathbf{x}^*|| \leqslant sB \exp(-\sum_{t=0}^{k-1} c^t_{ss}) + C_{ss} \sigma,$ where $c^t_{\textit{ss}} \geqslant c$ but $\mathcal{C}_{\textit{ss}} \leqslant \mathcal{C}$.

Introduction

Reviews Derivation of LMA Proof of Lovasz exte Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Improved LISTA Theoretical Linear Convergence of Unfolded ... [4]

Figure: The performance of LISTA.

Yuchen Jin Niether John Week 1 University of Houston 1st February, 2019 13/16

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Outline

1 Introduction

2 Reviews

- Derivation of LMA
- Proof of Lovasz extension
- **Conjugate gradient descent**
- Decentralized FrankWolfe algorithm
- **Improved LISTA**

3 Reference

Introduction

Reviews Derivation of LMA Proof of Lovasz extension Conjugate gradient descent Decentralized FrankWolfe algorithm Improved LISTA

Reference I

Yuchen Jin Nichten Jin Week 1 Week 1 University of Houston 1st February, 2019 15/16

Introduction

Reviews

Proof of Lovasz extension

Conjugate gradient descent

Decentralized FrankWolfe algorithm Improved LISTA

Thank you for listening! IT'S TIME FOR Q&A.