
Weekly Report I: recent paper review
YUCHEN JIN
Dept. of ECE
University of Houston



Introduction

Reviews
Derivation of LMA

Proof of Lovasz extension

Conjugate gradient descent

Decentralized FrankWolfe algorithm

Improved LISTA

Reference

Outline

1 Introduction

2 Reviews
Derivation of LMA
Proof of Lovasz extension
Conjugate gradient descent
Decentralized FrankWolfe algorithm
Improved LISTA

3 Reference

Yuchen Jin Week 1 University of Houston 1st February, 2019 2 / 16



Introduction

Reviews
Derivation of LMA

Proof of Lovasz extension

Conjugate gradient descent

Decentralized FrankWolfe algorithm

Improved LISTA

Reference

Introduction

Recent works:
Finish two articles on my site.

1 note20180824special: Derivation of LMA.
2 note20181129special: Derivation of Lovasz extension [1].

Read three papers roughly.
1 About conjugate gradient descent (propose a new coefficient) [2].
2 About decentralized FrankWolfe algorithm [3].
3 About an improvement of LISTA (faster convergence) [4].
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Derivation of LMA

Assume we have g(f(x)), where z = f(x).

Expansion for function g(·).

g(z +∆z)− g(z) ≈ ∇gT (z)∆z +
1
2
∆zT H(g)∆z, (1)

The problem is
x̂ = argmin

x
∥y − f(x)∥2.

Let z get first-order expansion:

∆z =
∂f
∂x

∆x = J(f)∆x.

Finally we get
g(x +∆x)− g(x)

∆x
≈

∆xT JT J − 2(y − f(x))T J = 0..

Sub problem’s params into (1).

g(z) = ∥y − z∥2,

z = f(x),

∇gT (z) = −2(y − z)T ,

H(g) = 2I,

J(f) := J,

(2)
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Proof of Lovasz extension
The Lovťasz-Softmax loss: A tractable surrogate ... [1]

Algorithm 1 Gradient of the Jaccard loss extension ∆Jc

Inputs: vector of errorsm(c) ∈ Rp+
class foreground pixels δ = {y∗ = c} ∈ {0, 1}p

Output: g(m) gradient of ∆Jc (Equation (9))
1: π ← decreasing sort permutation form
2: δπ ← (δπi

)i∈[1,p]

3: intersection← sum(δ)− cumulative sum(δπ)
4: union← sum(δ) + cumulative sum(1− δπ)
5: g ← 1− intersection/union
6: if p > 1 then
7: g[2 : p]← g[2 : p]− g[1 : p− 1]
8: end if
9: return gπ−1

The primal Jaccard index:

∆c(ŷ, y∗) =
|Mc|

|{y∗ = c} ∪ Mc|
.

The Jaccard index in algorithm:

∆cAlg =
S1∑

(δ) + S(1 − δ)
.

Lovasz extension:
∆̄c =

∑p
i=1 mπi gπi .

For the index (i) of δ, exist l ,
When i ⩽ l , mπi = 1, ∆c = ∆cAlg;
When i > l , mπi = 0, ∆c ̸= ∆cAlg.
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Proof of Lovasz extension
The Lovťasz-Softmax loss: A tractable surrogate ... [1]

Figure: An example of the primal
function of ∆.

Figure: Compare the Lovasz extensions from
algorithm and theory.
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Conjugate gradient descent
A New Family of Conjugate Gradient Descent ... [2]

To solve x̂ = argmin
x

f (x), the algorithm is:

1 Initialize the input parameter x0, k = 0.
2 Calculate first-order gradient gk = ∇f (xk ).
3 Compute βk which is the conjugate

gradient coefficient.
4 Update descent direction: when k = 0, let

dk = gk ; when k > 0, dk = −gk +βk dk−1.
5 Use line search to find the best update

parameter: αk = argminα f (xk + αdk ).
6 Let xk+1 = xk + αk dk . If f (xk+1) < f (xk )

and ∥gk∥ < ε, stop; otherwise get back to
step 2.

The author proposes a new
coefficient that

βRMF
k =

gT
k (gk − gk−1)

∥dk−1
∥2.

Give the proof that
f (xk+1)− f (xk) ⩽

− 1
9L

(gT
k dk)

2

∥dk∥
, then we have

lim
k→∞

∥gk∥ = 0.
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Decentralized FrankWolfe algorithm
Decentralized FrankWolfe Algorithm for Convex and Nonconvex Problems [3]

To solve x̂ = argmin
x∈D

∑
i fi(x), suppose that

∑
j Wij = 1 for each i , the

algorithm is:
1 For each agent, calculate the local average iterate among its neighbor:

x̄i =
∑

j Wijxj , where Wij is an element of the adjacent matrix.
2 For each agent, calculate the local average gradient among its neighbor:

∇F i =
∑

j Wij∇fj(xj).
3 Let αi = arg min

αi∈D
αT

i ∇F i .

4 Update iterate: xi+1 = (1 − γ)x̄i + γαi .

Yuchen Jin Week 1 University of Houston 1st February, 2019 9 / 16



Introduction

Reviews
Derivation of LMA

Proof of Lovasz extension

Conjugate gradient descent

Decentralized FrankWolfe algorithm

Improved LISTA

Reference

Decentralized FrankWolfe algorithm
Decentralized FrankWolfe Algorithm for Convex and Nonconvex Problems [3]

Compare to conventional FW algorithm, DeFW could solve a combination of
convex functions fi with multiple agents and parallel computing.
The author has proved that the local average with matrix W could serve as a
global average by convergence. Denote the real average of any θi is θa:

For any θ̄i =
∑

j Wijθj ,
∑N

i=1 ||θ̄i − θa||2 ⩽ |λ2(W)|2
∑N

i=1 ||θi − θa||2.

λ2(W) ⩽
(

t0(α)
t0(α) + 1

)α 1
1 + t−α

0 (α)
, where λ2 is the 2nd largest eigenvalue.

maxi∥x̄i − xa∥ = 1
tα Cp, where Cp = tα0 (α)

√
Nρ̄.

maxi∥∇F i −∇F a∥ = 1
tα tα0 (α)2

√
N(2Cp + ρ̄)L.
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Improved LISTA
Theoretical Linear Convergence of Unfolded ... [4]

Figure: The LISTA network structure.
The network is inspired from an algorithm, to learn more, please check m:
note20180813special: ISTA and AMP.
ISTA is used to solve “sparse inverse problem”:
x̂ = argmin

x
1
2∥y − Ax∥2

2 + λ|x|.
The basic form of the layer is xk+1 = η(Wk1b + Wk2xk , θk)
η(·, θ) is the soft thresholding function.
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Improved LISTA
Theoretical Linear Convergence of Unfolded ... [4]

The improvement for partial
weight coupling (LISTA-CP):

The author prove that to let xk

converges, we need to have
Wk2 = I − Wk1A.
Thus the layer need to be
adapted to
xk+1 = η(xk WT

k (b − Axk ), θk ).

LISTA-CP could converge to
||xk − x∗|| ⩽ sB exp(ck) + Cσ.

The improvement for support selection
technique (LISTA-SS): The thresholding
function would be adapted as
ηss(vk , θk , Sk), where
vk = Wk1b + Wk2xk .
First, sort all the values vk that need to
be threshold, the largest pk values would
remains in set Sk .

vk ∈ Sk , use hard thresholding as ηss.
vk /∈ Sk , use soft thresholding as ηss.

LISTA-CPSS could converge to
||xk − x∗|| ⩽ sB exp(−

∑k−1
t=0 ct

ss) +Cssσ,
where ct

ss ⩾ c but Css ⩽ C.
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Improved LISTA
Theoretical Linear Convergence of Unfolded ... [4]
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(a) Noiseless Case
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(b) Noisy Case: SNR=40dB
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(c) Noisy Case: SNR=30dB
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(d) Noisy Case: SNR=20dB

Figure: The performance of LISTA.
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Thank you for listening!
IT’S TIME FOR Q&A.
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