Weekly Report 2

Further literature review and brief introduction about future plan

ITTS:

Yuchen Jin

Dept. of ECE, University of Houston

February 8, 2019

Outline

Future Plan Feeding offset Use derivative **Reference**

1 Introduction

2 Recent reviews

- Vector-AMP
- **Adversarial Regularizers**
- Inf-ADMM-ADNN

3 Future Plan

- **•** Feeding offset
- **·** Use derivative
- **4 Reference**

I

Outline

Vector-AMP

• Inf-ADMM-ADNN

• Feeding offset **·** Use derivative

• Adversarial Regularizers

Feb. 8 University of Houston **Alternative Control Control Control Control** - 3 - **3 - Yuchen Jin**

Introduction

- *•* Arrange two beamer templates and upload them to Github.
- https://cainmagi.github.io/projects/latex_templates/ • Update a new article, now it has already include 8 brief reviews on different papers.
	- 1 note20190129: A collection of researches about inverse problem..
- *•* Read 3 more papers in this week. Until now I have reviewed all papers that are directly related to inverse problems from NIPS-2010 to NIPS-2018. The papers about dictionary learning and general optimization have not been reviewed yet.
	- 1 About an inspection on Vector-AMP [1].
	- 2 About learning a regularization term [2].
	- 3 About deep-learning support ADMM algorithm [3].

Future plan:

- 1 How to feed offset into the network.
- 2 How to make use of derivative.
- **3** How to use transfer learning.

Use derivative **Reference**

Outline

3 Future Plan

- **•** Feeding offset
- **·** Use derivative
- **4 Reference**

Recent reviews

Plug-in Estimation in High-Dimensional Linear ... [1]

Introduction Recent reviews

Vector-AMP Adversarial Regularizers Inf-ADMM-ADNN

Future Plan Feeding offset Use derivative **Reference**

AMP Iteration

$$
b_t = \frac{\|\mathbf{x}_t\|_0}{M}.\tag{1-1}
$$

$$
\mathbf{v}_t = \mathbf{y} - \mathbf{A}\mathbf{x}_t + b_t \mathbf{v}_{t-1}.
$$
 (1-2)

$$
\lambda_t = \frac{\alpha ||\mathbf{v}_t||_2}{\sqrt{M}}.
$$
 (1-3)

$$
\mathbf{x}_{t+1} = \text{prox}_{\lambda_t|\cdot|}(\mathbf{x}_t + \mathbf{A}^T \mathbf{v}_t). \quad (1-4)
$$

- Recall the AMP algorithm which is used to solve $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}}$ 1 $\frac{1}{2}$ ||**y** − **Ax**|| $\frac{2}{2}$ + λ |**x**|.
- AMP could converge much faster than ISTA & FISTA.
- **LAMP** converges faster than LISTA.
- **AMP/LAMP** requires the **A** to be a (large) i.i.d. (sub)Gaussian random matrix.

Recent reviews

Plug-in Estimation in High-Dimensional Linear ... [1]

- We call prox_{λ |·|}(·) proximal operator, which solution is soft thresholding. This is the denoiser activation.
- Repeating the AMP steps in each iteration but using different activations, we have VAMP.

Recent reviews

Plug-in Estimation in High-Dimensional Linear ... [1]

- VAMP has two different activating functions $\mathbf{g}_1(\cdot)$ and $g_2(\cdot)$.
- **g**₁(\cdot) could be an arbitrary denoiser. In (1-4), we use $prox_{\lambda|\cdot|}(\cdot)$ as $\mathbf{g}_1(\cdot)$.
- **g**₂(\cdot) is a solution to the L2-penalized linear inverse problem. See (2)
- **NO** VAMP do not requires **A** to be Gaussian random. Instead, **A** only needs to be an arbitrary right rotationally invariant matrix.
- Gonventionally VAMP requires g_1 to be a separable denoiser.
- \blacksquare This paper works on the issue that if the noise in the original problem is in Gaussian distribution, VAMP could use non-separable denoiser including Group-Based Denoiser, Convolutional Denoiser, CNN and Singular-Value Thresholding (SVT) Denoiser.

$$
\mathbf{g}_2(\mathbf{r}_{2k}, \gamma_{2k}) := \left(\gamma_\omega \mathbf{A}^T \mathbf{A} + \gamma_{2k} \mathbf{I}\right)^{-1} \left(\gamma_{2k} \mathbf{A}^T \mathbf{y} + \gamma_{2k} \mathbf{r}_{2k}\right).
$$
 (2)

Introduction

Recent reviews Vector-AMP Adversarial Regularizers Inf-ADMM-ADNN **Future Plan** Feeding offset Use derivative **Reference**

Recent reviews

Adversarial Regularizers in Inverse Problems [2]

 \blacksquare The problem is:

$$
\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda f(\mathbf{x}).
$$
 (3)

■ This paper proposes a method to learn a network $\Psi_{\Theta}(\cdot)$ to replace the regularization *f* in (3).

First, we need to have a fast method to predict the inverse directly.

- **•** Inspired by [4], the author use pseudo-inverse to calculate $\tilde{\mathbf{x}} = \mathbf{A}^* \mathbf{y}$.
- *•* The author claims that this inverse could be computed fast.
- The set of ground truth is \mathbb{P}_r .
- The set of observation is \mathbb{P}_y .
- The set of pseudo-inverse is \mathbb{P}_n .
- \blacksquare In the testing phase, we could use the gradient descent based methods like:

$$
\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha \nabla_{\mathbf{x}} \left(\|\mathbf{y} - \mathbf{A} \mathbf{x}^k\|_2^2 + \lambda \Psi_{\Theta}(\mathbf{x}^k) \right). \tag{4}
$$

Recent reviews

Adversarial Regularizers in Inverse Problems [2]

Figure 1: GAN structure for training ΨΘ(*·*).

- The training phase could be viewed as training a GAN with fixed and predefined generator.
- The loss function is defined in (5).
- \mathbf{x}_r ∼ \mathbb{P}_r , \mathbf{x}_n ∼ \mathbb{P}_n and $\mathbf{x}_i = \varepsilon \mathbf{x}_r + (1 - \varepsilon \mathbf{x}_n).$
- The last term is used to preserve Lipschitz continuity.

$$
\mathscr{L} = \Psi_{\boldsymbol{\Theta}}(\mathbf{x}_r) - \Psi_{\boldsymbol{\Theta}}(\mathbf{x}_n) + \mu \max \left(\|\nabla_{\mathbf{x}_i} \Psi_{\boldsymbol{\Theta}}(\mathbf{x}_i) \|_2^2, 0 \right)^2.
$$
 (5)

Inf-ADMM-ADNN

An inner-loop free solution to inverse problems ... [3]

Considering a linear inverse problem in a generalized form:

$$
\arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{z}\| + \lambda \mathcal{R}(\mathbf{x}, \mathbf{y}),
$$

s.t. $\mathbf{z} = \mathbf{x}$. (6)

 \blacksquare To solve this problem, we may need Lagrange multiplier method which decomposes the gradient descent into 3 steps in each iteration:

Lagrange multiplier method

$$
\left\| \mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \beta \left\| \mathbf{x} - \mathbf{z}^k + \frac{\mathbf{u}^k}{2\beta} \right\|^2 + \lambda \mathcal{R}(\mathbf{x}, \mathbf{y}),\tag{7-1}
$$

$$
\left\{\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} \|\mathbf{y} - \mathbf{A}\mathbf{z}\|^2 + \beta \left\|\mathbf{x}^{k+1} - \mathbf{z} + \frac{\mathbf{u}^k}{2\beta}\right\|^2, \tag{7-2}
$$

$$
\begin{bmatrix} \mathbf{z} & -\mathbf{a}_{\mathbf{g}} \mathbf{a}_{\mathbf{g}} \mathbf{a}_{\mathbf{g}} \\ \mathbf{u}^{k+1} & = \mathbf{u}^k + 2\beta \left(\mathbf{x}^{k+1} - \mathbf{z}^{k+1} \right) \end{bmatrix} \tag{7-3}
$$

Inf-ADMM-ADNN An inner-loop free solution to inverse problems ... [3]

- Use a four-layer surrogate to learn $C_{\phi} \rightarrow B$.
- For any random variable ε , the training loss is \mathscr{L} $=$ $||\varepsilon - \mathbf{C}_{\phi} \mathbf{B}^{-1} \varepsilon||_2^2 + ||\varepsilon - \mathbf{B}^{-1} \mathbf{C}_{\phi} \varepsilon||_2^2.$

Figure 2: Learning the inverse of matrix

Inf-ADMM-ADNN

An inner-loop free solution to inverse problems ... [3]

- \blacksquare The solution to (7-1) may not be closed-form due to $\mathcal{R}(\cdot)$. But we still have a conclusion:
	- 1 This problem is essentially solving the proximal operator argmin **x** $\frac{1}{2}$ ||**x** − **v**|| $\frac{2}{2}$ + \Re (**x**, **y**).
	- 2 The derivative shows that **v***−***x** ∝ [∂]*R*.
	- 3 Then we could denote that $\mathbf{v} = \mathscr{F}(\mathbf{x})$.
	- 4 By using a network as the surrogate, we could solve the inverse $\mathbf{x} = \mathscr{F}^{-1}(\mathbf{v})$.

■ We use an example-based GAN to solve the inverse of \mathscr{F} . The generator is a denoise network.

Figure 3: Learning the inverse of proximal operator.

Outline

Vector-AMP

- **Adversarial Regularizers**
- Inf-ADMM-ADNN
- **3 Future Plan**
	- **•** Feeding offset
	- **·** Use derivative
	- **4 Reference**

Future Plan How to feed offset into the network.

Inf-ADMM-ADNN **Future Plan** Feeding offset Use derivative

Reference

- This method has been proved to be ineffective.
- \blacksquare In this method, we only give the position of the shot.

Future Plan How to feed offset into the network.

Figure 5: Incorporate offsets by distance to shot.

- This method is not expected to be effective.
- It is a similar approach. Dr. Hu has suggested me to do that, I would have a try.

Future Plan How to feed offset into the network.

Figure 6: Adjust the signals by normalization.

- This method is expected to be effective, but it depends on pre- and postprocessing.
- First, interpolate the signal into high-resolution.
- Second, let network predict high-resolution low-frequency data.
- Finaaly, downsample the prediction to the same resolution of input.

■ The cumulative errors in the local window is small.

Outline

Future Plan Feeding offset Use derivative

Reference

2 Recent reviews

- Vector-AMP
- **Adversarial Regularizers**
- Inf-ADMM-ADNN

3 Future Plan

- **•** Feeding offset
- **·** Use derivative

4 Reference

Reference I

Future Plan Feeding offset Use derivative

Reference

F A. K. Fletcher, P. Pandit, S. Rangan, S. Sarkar, and P. Schniter, "Plug-in estimation in high-dimensional linear inverse problems: A rigorous analysis," in *Advances in Neural Information Processing Systems 31*, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 7451–7460. [Online]. Available: http://papers.nips.cc/paper/ 7973-plug-in-estimation-in-high-dimensional-linear-inverse-problems-a-rigorous-analysis. pdf S. Lunz, C. Schoenlieb, and O. Öktem, "Adversarial regularizers in inverse problems," in

Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 8516–8525. [Online]. Available: http://papers.nips.cc/paper/8070-adversarial-regularizers-in-inverse-problems.pdf

Reference II

Regularizers

Inf-ADMM-ADNN **Future Plan** Feeding offset Use derivative

Reference

K. Fan, Q. Wei, L. Carin, and K. A. Heller, "An inner-loop free solution to inverse problems using deep neural networks," in *Advances in Neural Information Processing Systems 30*, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 2370–2380. [Online]. Available: http://papers.nips.cc/paper/

6831-an-inner-loop-free-solution-to-inverse-problems-using-deep-neural-networks.pdf

K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," *IEEE Transactions on Image Processing*, vol. 26, no. 9, pp. 4509–4522, Sep. 2017.

Thank you for Listening

It's time for Q & A