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Introduction

Recent works:
• Arrange two beamer templates and upload them to Github.

https://cainmagi.github.io/projects/latex_templates/
• Update a new article, now it has already include 8 brief reviews on different

papers.
1 note20190129: A collection of researches about inverse problem..

• Read 3 more papers in this week. Until now I have reviewed all papers that
are directly related to inverse problems from NIPS-2010 to NIPS-2018. The
papers about dictionary learning and general optimization have not been
reviewed yet.

1 About an inspection on Vector-AMP [1].
2 About learning a regularization term [2].
3 About deep-learning support ADMM algorithm [3].

Future plan:
1 How to feed offset into the network.
2 How to make use of derivative.
3 How to use transfer learning.
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Recent reviews
Plug-in Estimation in High-Dimensional Linear ... [1]

AMP Iteration

bt =
∥xt∥0

M
. (1-1)

vt = y−Axt +btvt−1. (1-2)

λt =
α∥vt∥2√

M
. (1-3)

xt+1 = proxλt |·|(xt +AT vt). (1-4)

Recall the AMP algorithm which
is used to solve
x̂ = argmin

x
1
2∥y−Ax∥2

2 +λ |x|.

AMP could converge much faster
than ISTA & FISTA.
LAMP converges faster than
LISTA.
AMP/LAMP requires the A to be
a (large) i.i.d. (sub)Gaussian
random matrix.
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Recent reviews
Plug-in Estimation in High-Dimensional Linear ... [1]

We call proxλ |·|(·) proximal operator, which solution is soft thresholding.
This is the denoiser activation.
Repeating the AMP steps in each iteration but using different activations,
we have VAMP.

Algorithm 1 Vector AMP (LMMSE form)

Require: LMMSE estimator g2(·, γ2k) from (4), denoiser g1(·, γ1k), and number of iterations Kit.
1: Select initial r10 and γ10 ≥ 0.
2: for k = 0, 1, . . . ,Kit do
3: // Denoising
4: x̂1k = g1(r1k, γ1k)
5: α1k = 〈∇g1(r1k, γ1k)〉
6: η1k = γ1k/α1k, γ2k = η1k − γ1k
7: r2k = (η1kx̂1k − γ1kr1k)/γ2k
8:
9:

10: x̂
// LMMSE estimation
2k = g2(r2k, γ2k)

11: α2k = 〈∇g2(r2k, γ2k)〉
12: η2k = γ2k/α2k, γ1,k+1 = η2k − γ2k
13: r1,k+1 = (η2kx̂2k − γ2kr2k)/γ1,k+1

x
14: end for
15: Return ̂1Kit

.
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Plug-in Estimation in High-Dimensional Linear ... [1]

VAMP has two
different activating
functions g1(·) and
g2(·).
g1(·) could be an
arbitrary denoiser. In
(1-4), we use
proxλ |·|(·) as g1(·).
g2(·) is a solution to
the L2-penalized
linear inverse
problem. See (2)

VAMP do not requires A to be Gaussian
random. Instead, A only needs to be an
arbitrary right rotationally invariant matrix.
Conventionally VAMP requires g1 to be a
separable denoiser.
This paper works on the issue that if the noise
in the original problem is in Gaussian
distribution, VAMP could use non-separable
denoiser including Group-Based Denoiser,
Convolutional Denoiser, CNN and
Singular-Value Thresholding (SVT) Denoiser.

g2(r2k , γ2k ) :=
(

γωAT A+ γ2k I
)−1(

γ2kAT y+ γ2k r2k

)
. (2)
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Recent reviews
Adversarial Regularizers in Inverse Problems [2]

The problem is:

x̂ = argmin
x
∥y−Ax∥2

2 +λ f (x). (3)

This paper proposes a method to learn a network ΨΘΘΘ(·) to replace the
regularization f in (3).
First, we need to have a fast method to predict the inverse directly.

• Inspired by [4], the author use pseudo-inverse to calculate x̃ = A∗y.
• The author claims that this inverse could be computed fast.
• The set of ground truth is Pr .
• The set of observation is Py .
• The set of pseudo-inverse is Pn.

In the testing phase, we could use the gradient descent based methods
like:

xk+1 = xk −α∇x

(
∥y−Axk∥2

2 +λΨΘΘΘ(xk )
)
. (4)
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Adversarial Regularizers in Inverse Problems [2]

A*(·)A*(·)

xx
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x̂

ª£(¢)

2 [0; 1]

Figure 1: GAN structure for training
ΨΘΘΘ(·).

The training phase could be
viewed as training a GAN with
fixed and predefined generator.
The loss function is defined in
(5).
xr ∼ Pr , xn ∼ Pn and
xi = εxr +(1− εxn).
The last term is used to preserve
Lipschitz continuity.

L =ΨΘΘΘ(xr )−ΨΘΘΘ(xn)+µ max
(
∥∇xiΨΘΘΘ(xi)∥2

2, 0
)2

. (5)
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Inf-ADMM-ADNN
An inner-loop free solution to inverse problems ... [3]

Considering a linear inverse
problem in a generalized form:

argmin
x
∥y−Az∥+λR(x, y),

s.t. z = x.
(6)

To solve this problem, we may
need Lagrange multiplier method
which decomposes the gradient
descent into 3 steps in each
iteration:

Lagrange multiplier method

xk+1 = argmin
x

β
∥∥∥∥x−zk +

uk

2β

∥∥∥∥2

+λR(x, y),

zk+1 = argmin
z

∥y−Az∥2 +β
∥∥∥∥xk+1 −z+

uk

2β

∥∥∥∥2

,

uk+1 = uk +2β
(

xk+1 −zk+1
)

(7-1)

(7-2)

(7-3)
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An inner-loop free solution to inverse problems ... [3]

The solution to (7-2) is zk+1 = K
(
AT y+βxk+1 + uk/2

)
.

K =
(
AT A+β I

)−1
= β−1 (I−AT BA

)
, where B =

(
β I+AAT )−1.

(a) (b) (c)

Figure 2: Learning the inverse of matrix
B.

Use a four-layer surrogate to
learn Cϕ → B.
For any random variable ε, the
training loss is L =
∥ε −Cϕ B−1ε∥2

2 +∥ε −B−1Cϕ ε∥2
2.
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Inf-ADMM-ADNN
An inner-loop free solution to inverse problems ... [3]

The solution to (7-1) may not be
closed-form due to R(·). But we
still have a conclusion:

1 This problem is essentially
solving the proximal operator
argmin

x
1
2∥x−v∥2

2 +R(x, y).

2 The derivative shows that
v−x ∝ ∂R.

3 Then we could denote that
v = F (x).

4 By using a network as the
surrogate, we could solve the
inverse x = F−1(v).

We use an example-based GAN
to solve the inverse of F . The
generator is a denoise network.

(d) (e)

Figure 3: Learning the inverse of
proximal operator.
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Future Plan
How to feed offset into the network.

Low
frequency

Low
frequency

High
frequency

High
frequency

Shot position

Figure 4: Incorporate offsets directly by one-hot vector.

This method has been proved to be ineffective.
In this method, we only give the position of the shot.
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Future Plan
How to feed offset into the network.

Low
frequency

Low
frequency

High
frequency

High
frequency

Distance to shot

Figure 5: Incorporate offsets by distance to shot.

This method is not expected to be effective.
It is a similar approach. Dr. Hu has suggested me to do that, I would have
a try.
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Future Plan
How to feed offset into the network.
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Low
frequency

Real high
frequency

data

Real high
frequency

data

OffsetOffset

InterpolationInterpolation
High resolution

and high 
frequency data

High resolution
and high 

frequency data

Figure 6: Adjust the signals by normalization.

This method is expected to be effective, but it depends on pre- and post-
processing.
First, interpolate the signal into high-resolution.
Second, let network predict high-resolution low-frequency data.
Finaaly, downsample the prediction to the same resolution of input.
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Future Plan
How to make use of derivative.
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Figure 7: Incorporate offsets by window-wise LSTM.

Extract the original signal into small windows. Each window is companied
with a begin offset.
Use local window to remove the sampling effect, and use LSTM to learn
global feature.

Feb. 8 University of Houston - 18 - Yuchen Jin



Introduction

Recent
reviews
Vector-AMP

Adversarial
Regularizers

Inf-ADMM-ADNN

Future Plan
Feeding offset

Use derivative

Reference

Future Plan
How to make use of derivative.

Deriv.
1

Deriv.
1

Deriv.
2

Deriv.
2

Deriv.
3

Deriv.
3

......

Real high
frequency

data

Real high
frequency

data

Local
win. 1
Local
win. 1

Local
win. 2
Local
win. 2

Local
win. 3
Local
win. 3

......

Off.
1

Off.
1

Off.
2

Off.
2

Off.
3

Off.
3

......

LSTMLSTM

LSTMLSTM

LSTMLSTM

......

Local
win. 1
Local
win. 1

Local
win. 2
Local
win. 2

Local
win. 3
Local
win. 3

......

Off.
1

Off.
1

Off.
2

Off.
2

Off.
3

Off.
3

......

Low
frequency
prediction

Low
frequency
prediction

Deriv.
1

Deriv.
1

Deriv.
2

Deriv.
2

Deriv.
3

Deriv.
3

......

differentiation Integration

Figure 8: Incorporate offsets by window-wise LSTM and derivative calculation.
Derivative is easy to calculate ∂ f(x) = f(x+1)−f(x)/Off(x+1)−Off(x).
We use local begin value of the window to correct the deviation.
The cumulative errors in the local window is small.
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N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 7451–7460.
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