
Report for UH SPE Student Paper Contest

Using a Physics-Driven Deep Neural Network to Solve Inverse
Problems for LWD Azimuthal Resistivity Measurements

Yunchen Jin1, Xuqing Wu1, Yueqin Huang2, and Jiefu Chen1.

1. University of Houston
2. Cyentech Consulting LLC

February 23, 2019



Introduction
Background

Problem

Challenge

Proposed
Method
Network Structure

Back Propagation

Advantages

Results
Example

Numerical Tests

Reference

Ack.

Outline

1 Introduction
Background
Problem
Challenge

2 Proposed Method
Network Structure
Back Propagation
Advantages

3 Results
Example
Numerical Tests

4 Reference
5 Acknowledgment

Feb. 23 University of Houston - 2 - Yunchen Jin



Introduction
Background

Problem

Challenge

Proposed
Method
Network Structure

Back Propagation

Advantages

Results
Example

Numerical Tests

Reference

Ack.

Outline

1 Introduction
Background
Problem
Challenge

2 Proposed Method
Network Structure
Back Propagation
Advantages

3 Results
Example
Numerical Tests

4 Reference
5 Acknowledgment

Feb. 23 University of Houston - 3 - Yunchen Jin



Introduction
Background

Problem

Challenge

Proposed
Method
Network Structure

Back Propagation

Advantages

Results
Example

Numerical Tests

Reference

Ack.

Introduction
Background

Figure 1: The schema of directional drilling. (www.amerexco.com)

Geosteering is a key technique in directional drilling.
1 The drilling tool could emit a series of electromagnetic waves.
2 Reflected EM waves are collected by sensors. (Logging)
3 The drilling angle would be adjusted by analyzing collected data. (Drilling)

Logging and drilling need to be synchronous.
This work is focus on fast logging.
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Figure 2: FWI logging tool with antennas.

T represents transmitting antennas, and R represents receiving antennas.
The collected data for each receiver is a combination of the reflected
transmitting signals.
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Figure 3: Directional drilling schema for an example of 3-layer model.

The earth model are formulated by geophysical parameters.
R represents resistivities, Dup and Ddn are boundaries, and Dip is the dip
angle.
The observed measurements are collected by the receiving antennas.
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Introduction
Problem

Geosteering Inverse Problem

x̂ = argmin
x

L(x)

= argmin
x

∥y−F(x)∥2
2 +λR(x).

(1)

∂L
∂x

= 2(y−F(x))
∂F
∂x

+λ
∂R
∂x

. (2)

In (1), the electromagnetic forward model could be regarded as a
function F which accepts the earth model and produces synthetic
measurements. R is a regularization term.
(2) is usually used in deterministic optimization [1, 2]. The gradient ∂F

∂x
is a Jacobian matrix which could be numerically calculated.
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Introduction
Challenge

Two methods for logging.

Table 1: Different logging methods.

On ground Underground
Data Amount Inadequate Adequate
Computation Fast Slow
Memory Large Small

On ground method.
• Data is not enough but

hardware is powerful.
• Use optimization method.

Underground method.
• All data is available but

hardware is limited.
• Use lookup table.
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Figure 4: Positive Pulse Pressure Wave Generator and Corresponding Pressure
Waveform with Encoded Digital Data. [3]

The collected data need to be transmitted back to the ground by pressure
wave.
The communication rate would be a bottle neck.
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0x0000: A=0, B=0, C=0

0x0001: A=0, B=0, C=1

0x0002: A=0, B=0, C=2

...

0x0013: A=0, B=0, C=19

0x0014: A=0, B=1, C=0

0x0015: A=0, B=1, C=1

...

0x018F: A=0, B=19, C=19

0x0190: A=1, B=0, C=0

0x1F3F: A=19, B=19, C=19

...

0x0000: F(0, 0, 0)

0x0001: F(0, 0, 1)

0x0002: F(0, 0, 2)

...

0x0013: F(0, 0, 19)

0x0014: F(0, 1, 0)

0x0015: F(0, 1, 1)

...

0x018F: F(0, 19, 19)

0x0190: F(1, 0, 0)

0x1F3F: F(19, 19, 19)

...

Table X Table Y

Figure 5: Lookup table method for fast estimation of the inversion.

Use the best-matched sample in the table to estimate a coarse solution.
Drawbacks:

• Large memory consumption.
• Samples are extremely coarse.

Feb. 23 University of Houston - 10 - Yunchen Jin
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Network Structure
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Figure 6: The deep physics-driven CNN structure.

The deep network is a 1D network which is adapted from VGG16 model. The
model is trained by Adam optimizer [4].
Each convolutional layer composes of a convolution, an instance
normalization [5] and a PReLu activation [6].
The loss function of the network includes a model misfit and a data misfit.
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Proposed Method
Network Structure

Train a deep neural network

argmin
ΘΘΘ

N

∑
i=1

β1Lml(y(i), x(i), ΘΘΘ)+β2Ldl(y(i), F , ΘΘΘ),

(3-1)

Lml(y, x, ΘΘΘ) = ∥x−N(y, ΘΘΘ)∥2
2, (3-2)

Ldl(y, F , ΘΘΘ) = ∥y−F(N(y, ΘΘΘ))∥2
2, (3-3)

In training phase, we adjust the network
parameters ΘΘΘ by feeding N training samples.

The model misfit Lml is calculated by fitting the
ground truth of earth models in train set.

The data misfit Ldl is calculated by letting the
synthetic measurements fit the observed ones.

Get test results

F−1(y)≈ N(y, ΘΘΘ). (4)

In testing phase, the
network parameters ΘΘΘ are
fixed.
The feed-forward network
could produce the
predictions quickly.

Feb. 23 University of Houston - 13 - Yunchen Jin
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Proposed Method
Back Propagation
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Figure 7: The implement of the forward model.

The forward model function is highly nonlinear.
It accepts the earth model parameters (1×M vector) and produces the
synthetic measurements (1×92 vector).
We use N to represent N samples.
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Figure 8: The implement of the derivative of the forward model.

The back-propagation only uses the current synthetic input of the forward
model (x̂) and the gradient from the next layer (2(y−F(x))).
The gradient would be back-propagated to the previous layer in the deep
network.
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Proposed Method
Advantages

The network could be deployed for underground method.
• The network is totally feed-forward and only requires light computation

(about 0.3s for 80 points). The lookup table is slower (about 60s) while the
optimization method is much slower (about 400s).

• The network has a small data size (lower than 30MB) compared to a
lookup table (about 1.6GB), which requires lower memory consumption.

The network could make use of all data by taking advantage of
underground method, while the optimization method could not.
The network could get a far more accurate prediction compared to
lookup table.
The computational cost of the network would not increase with the
data amount.

Feb. 23 University of Houston - 16 - Yunchen Jin
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Results
Example: 3-layer model inversion

(a) Ground truth. (b) Lookup table.

(c) DNN with physics. (d) DNN without physics.

Figure 9: The result of an example.

The results show the comparison of the predicted earth models.
The proposed network achieves better resistivity prediction compared to that of
the conventional data-driven network.

Feb. 23 University of Houston - 18 - Yunchen Jin
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Results
Example: 3-layer model inversion
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Figure 10: The result of an example.

We select some curves which show that the physics-driven
network(PhDNN) could achieve a better curve fitness.
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Results
Numerical Tests

10−3 10−2 10−1 100 101 102

Model misfit

10−4

10−3

10−2

10−1

100

101

102

D
at

a
m

is
fi

t

PhDNN
Data driven
Lookup table

Figure 11: The numerical tests over compared methods.

We generated 100 examples earth models like the shown one.
The test over the 100 examples show that compared to the data-driven
network, the proposed one could achieve the same model misfit but a
better data misfit.
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