Weekly Report 5

Review progress and current progress for writing paper

Yuchen Jin

Dept. of ECE, University of Houston

March 1, 2019

Introduction Review Paper progress Reference

Introduction

2 Review

3 Paper progress

A Reference

Introduction

Review Paper

progress

Reference

Review

Paper progress

4 Reference

Introduction

Introduction

Review Paper

progress

Reference

Recent works:

- Writing for a new review
 - 1 note20190227special: Learning the derivation for the convergence of solving inverse problem with deep network. [1, 2]
- Complete an new article
 - **1** note20190228special: Derivation for applying the non-negative least square algorithm to solve constrained problem.
- Progress on writing paper
 - 1 Have finished the framework of what we are planning for writing. (notes are attached to this slice).
 - 2 Generate more detail testing estimations.
 - 3 Propose a possible and slight revision for current work (Need to get more testing results).

Introduction

Review

Paper progress Reference

Introduction NETT: Solving Inverse Problems with Deep Neural Networks [1]

The regularized form of the problem

Introduction

Review

Paper progress Reference

$$egin{aligned} & \mathcal{K}_+ \in rgmin_{x\in\mathbb{D}} \ \mathcal{T}_{lpha,\ y_\delta}(x), \ & \mathcal{T}_{lpha,\ y_\delta}(x) := \mathcal{D}(\mathbf{F}(x),\ y_\delta) + lpha \mathcal{R}(\mathbb{V},\ x), \end{aligned}$$

The ideal form where the noise is zero

 $x_{+} \in \arg\min\{\mathcal{R}(\mathbb{V}, x) | x \in \mathbb{D} \cap \mathbf{F}(x) = y_{0}\}.$ (2)

The paper aims at the analysis of the convergence when

- the distance function $\mathcal{D}(\cdot)$ is fixed (e.g. the data misfit in our problem).
- the regularization term is realized by dictionary learning or deep network.
 - Dictionary learning: $\mathcal{R}(\mathbb{V}, \mathbf{x}) = |\mathbf{V} \mathbf{\Phi} \mathbf{x}|_q^q = \sum_{\lambda=1}^N \nu_{\lambda} |\boldsymbol{\varphi}_{\lambda}^T \mathbf{x}|^q$.
 - Deep network (CNN): $\mathcal{R}(\mathbb{V}, x) = \psi(\Phi(\mathbb{V}, x))$.

(1)

Introduction NETT: Solving Inverse Problems with Deep Neural Networks [1]

The formulation of the network

Introduction

Review

Paper progress Reference

$$\Phi(\mathbb{V}, x) := (\sigma_L \circ \mathbb{V}_L \circ \sigma_{L-1} \circ \mathbb{V}_{L-1} \circ \cdots \circ \sigma_1 \circ \mathbb{V}_1)(x),$$

$$\mathbb{V}_I := \mathbb{A}_I(x) + b_I,$$

$$\mathbb{A}_{I, \lambda}(x) := \sum_{\mu=1}^{N^{(l-1)}} \mathcal{K}_{\mu, \lambda}^{(l)}(x_{\mu}).$$

$$(5)$$

- $\sigma_l \circ \mathbb{V}_l$ represents "a layer of the network", where
 - $\sigma_l(\cdot)$ is the non-linear activating function.
 - $\mathbb{V}_{l}(\cdot)$ is viewed as an affine linear operator.
 - A_{*l*}(·) is defined by convolutions that maps the previous layer into the current one. *b_l* is the bias to different channels.

Introduction

Review

Paper

progress Reference

Introduction NETT: Solving Inverse Problems with Deep Neural Networks [1]

Conditions for the weak convergence

- The regularizer $\mathcal{R}(\mathbb{V}, \mathbf{x})$ satisfies that:
 - For layer *I*, we have $\mathbb{A}_{I}(x)$ is bounded linear, i.e. $\exists c_{I}, ||x|| \leq c_{I} ||\mathbb{A}(x)||$;
 - θ_l is a weekly continuous and coercive function;
 - ψ is a lower semi-continuous and coercive function.

The data consistency term should satisfied that

- For a $\tau \ge 1$, we have for any $y_1, y_2, y, \mathcal{D}(y_1, y_2) \le \tau(\mathcal{D}(y_1, y) + \mathcal{D}(y, y_2));$
- For any $y, y_0, \mathcal{D}(y, y_0) = 0 \iff y = y_0;$
- For any $(y_k)_{k\in\mathbb{N}}, y_k \to y \implies \mathcal{D}(y_k, y) \to 0;$
- $\mathcal{D}(\mathbf{F}(x), y)$ is sequentially lower semi-continuous with respect to x.

■ Hence we could find from the conditions of *R*:

- \mathcal{R} is weakly and sequentially lower semi-continuous;
- Since *R* is coercive, for all *t* > 0, *α* > 0 and *y*, we have that {*x*|*T_{α, y}*(*x*) ≤ *t*} is sequentially weakly (closed and bounded).

Introduction NETT: Solving Inverse Problems with Deep Neural Networks [1]

Theorem for weak convergence

- For all $\alpha > 0$ and y, $\exists T_{\alpha, y}(x)$.
- If $y_k \to y$ and $x_k \in \arg \min \mathcal{T}_{\alpha, y}(x)$, there exists the weak accumulation points $(x_k)_{k \in \mathbb{N}}$ which is derived from the minimizer $\mathcal{T}_{\alpha, y}(x)$.
- Consider $y = \mathbf{F}(x)$, we have $(y_k)_{k \in \mathbb{N}}$ that $\mathcal{D}(y_k, y) + \mathcal{D}(y, y_k) \leq \delta_k$, where $(\delta_k)_{k \in \mathbb{N}} \to 0$. Suppose that x_k is k^{th} iterative solution, i.e. $x_k \in \arg \min \mathcal{T}_{\alpha, \ \delta_k}(x, \ y_k)$. Then we could choose α that $\lim_{\delta \to 0} \alpha(\delta) = \lim_{\delta \to 0} \frac{\delta}{\alpha(\delta)} = 0.$ (6)
 - (x_k)_{k∈ℕ} has at least one weak accumulation point xx₊.
 - Any weakly convergent subsequence $(x_k)_{k \in \mathbb{N}}$ satisfies $\mathcal{R}(\mathbb{V}, x_{k(n)}) \rightarrow \mathcal{R}(\mathbb{V}, x_+)$.
 - If a the solution of (2) is unique, then we know $(x_k) \rightarrow x_+$.

Introduction

Review

Paper progress Reference

Introduction Review Paper progress

Reference

Introduction NETT: Solving Inverse Problems with Deep Neural Networks [1]

Absolute Bregman distance

$$\mathcal{B}_{\mathcal{F}}(\tilde{x}, x) = |\mathcal{F}(\tilde{x}) - \mathcal{F}(x) - \mathcal{F}'(x)(\tilde{x} - x)|.$$
 (6)

- Absolute Bregman distance shows that when the local part around x of the function could be fitted by linear function, B_F(x + ∆x, x) = 0.
- If for any x, $\mathcal{B}_{\mathcal{F}}(x + \Delta x, x) > 0$, the function would be totally non-linear.
- With the total non-linearity, the weak convergence would be used to derive the strong convergence, where
 - The solution of weak convergence is $x_{k(n)}$, which satisfies
 - $\mathcal{R}(\mathbb{V}, x_{k(n)}) \rightarrow \mathcal{R}(\mathbb{V}, x_{+}).$
 - $\mathcal{B}_{\mathcal{F}}(x_{k(n)}, x_+) \rightarrow 0.$
 - Hence we get $||x_{k(n)} x_+|| \rightarrow 0$.

Introduction

Review

Paper progress

Reference

Introduction

4 Reference

Paper progress

Introduction

Review

Paper progress

Reference

In the following part I would use $\ensuremath{\overline{\mathsf{M}}}$ to show the completed parts.

- 🗹 Introduction
- Related works
- Problem background
 - Industrial background
 - Data
 - Geosteering inverse problem
 - Challenges
- Proposed method
 - Bayesian view of our problem
 - Proposed network
 - 🗆 Train
 - Test
- Testing results
- It seems that our core idea has been produced by [3].

Introduction Review Paper progress

Reference

Introduction

Review

Reference I

- Introduction Review Paper progress
- Reference

- H. Li, J. Schwab, S. Antholzer, and M. Haltmeier, "NETT: Solving Inverse Problems with Deep Neural Networks," *arXiv e-prints*, p. arXiv:1803.00092, Feb 2018.
- E. Ekici, S. Jafari, M. Caldas, and T. Noiri, "Weakly λ-continuous functions," Novi Sad J. Math, vol. 38, no. 2, pp. 47–56, 2008.
- - J. Adler and O. Öktem, "Solving ill-posed inverse problems using iterative deep neural networks," *Inverse Problems*, vol. 33, no. 12, p. 124007, nov 2017. [Online]. Available: https://doi.org/10.1088%2F1361-6420%2Faa9581

Thank you for Listening

It's time for Q & A