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Introduction

Recent works:
• Writing for a new review

1 note20190227special: Learning the derivation for the convergence of solving
inverse problem with deep network. [1, 2]

• Complete an new article
1 note20190228special: Derivation for applying the non-negative least square

algorithm to solve constrained problem.
• Progress on writing paper

1 Have finished the framework of what we are planning for writing. (notes are
attached to this slice).

2 Generate more detail testing estimations.
3 Propose a possible and slight revision for current work (Need to get more

testing results).

Mar. 1 University of Houston - 4 - Yuchen Jin

https://cainmagi.github.io/notes/note20190227special/
https://cainmagi.github.io/notes/note20190228special/
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Introduction
NETT: Solving Inverse Problems with Deep Neural Networks [1]

The regularized form of the problem

x+ ∈ argmin
x∈D

Tα, yδ (x),

Tα, yδ (x) :=D(F(x), yδ )+αR(V, x),
(1)

The ideal form where the noise is zero

x+ ∈ argmin{R(V, x)|x ∈ D∩F(x) = y0}. (2)

The paper aims at the analysis of the convergence when
• the distance function D(·) is fixed (e.g. the data misfit in our problem).
• the regularization term is realized by dictionary learning or deep network.

▶ Dictionary learning: R(V, x) = |VΦΦΦx|qq = ∑N
λ=1 vλ |φφφT

λ x|q .
▶ Deep network (CNN): R(V, x) = ψ(ΦΦΦ(V, x)).

Mar. 1 University of Houston - 6 - Yuchen Jin
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Introduction
NETT: Solving Inverse Problems with Deep Neural Networks [1]

The formulation of the network

ΦΦΦ(V, x) := (σL ◦VL ◦σL−1 ◦VL−1 ◦ · · · ◦σ1 ◦V1)(x), (3)
Vl := Al(x)+bl , (4)

Al , λ (x) :=
N(l−1)

∑
µ=1

K(l)
µ, λ (xµ). (5)

σl ◦Vl represents “a layer of the network”, where
• σl(·) is the non-linear activating function.
• Vl(·) is viewed as an affine linear operator.
• Al(·) is defined by convolutions that maps the previous layer into the current

one. bl is the bias to different channels.

Mar. 1 University of Houston - 7 - Yuchen Jin
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Introduction
NETT: Solving Inverse Problems with Deep Neural Networks [1]

Conditions for the weak convergence
The regularizer R(V, x) satisfies that:

• For layer l , we have Al(x) is bounded linear, i.e. ∃ cl , ∥x∥⩽ cl∥A(x)∥;
• θl is a weekly continuous and coercive function;
• ψ is a lower semi-continuous and coercive function.

The data consistency term should satisfied that
• For a τ ⩾ 1, we have for any y1,y2,y , D(y1, y2)⩽ τ (D(y1, y)+D(y , y2));
• For any y ,y0, D(y , y0) = 0 ⇐⇒ y = y0;
• For any (yk )k∈N, yk → y =⇒ D(yk , y)→ 0;
• D(F(x), y) is sequentially lower semi-continuous with respect to x .

Hence we could find from the conditions of R:
• R is weakly and sequentially lower semi-continuous;
• Since R is coercive, for all t > 0,α > 0 and y , we have that {x |Tα, y (x)⩽ t}

is sequentially weakly (closed and bounded).
Mar. 1 University of Houston - 8 - Yuchen Jin
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NETT: Solving Inverse Problems with Deep Neural Networks [1]

Theorem for weak convergence
For all α > 0 and y , ∃ Tα, y (x).
If yk → y and xk ∈ argminTα, y (x), there exists the weak accumulation
points (xk )k∈N which is derived from the minimizer Tα, y (x).
Consider y = F(x), we have (yk )k∈N that D(yk , y)+D(y , yk )⩽ δk , where
(δk )k∈N → 0. Suppose that xk is k th iterative solution, i.e.
xk ∈ argminTα, δk

(x , yk ). Then we could choose α that

lim
δ→0

α(δ ) = lim
δ→0

δ
α(δ )

= 0. (6)

• (xk )k∈N has at least one weak accumulation point xx+.
• Any weakly convergent subsequence (xk )k∈N satisfies

R(V, xk(n))→R(V, x+).
• If a the solution of (2) is unique, then we know (xk )→ x+.

Mar. 1 University of Houston - 9 - Yuchen Jin
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Introduction
NETT: Solving Inverse Problems with Deep Neural Networks [1]

Absolute Bregman distance

BF (x̃ , x) = |F(x̃)−F(x)−F ′(x)(x̃ −x)|. (7)

Absolute Bregman distance shows that when the local part around x of
the function could be fitted by linear function, BF (x +∆x , x) = 0.
If for any x , BF (x +∆x , x)> 0, the function would be totally non-linear.
With the total non-linearity, the weak convergence would be used to derive
the strong convergence, where

• The solution of weak convergence is xk(n), which satisfies
R(V, xk(n))→R(V, x+).

• BF (xk(n), x+)→ 0.
• Hence we get ∥xk(n)−x+∥→ 0.

Mar. 1 University of Houston - 10 - Yuchen Jin
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Paper progress

In the following part I would use □✓ to show the completed parts.
• □✓ Introduction
• □✓ Related works
• Problem background

▶ Industrial background
▶ Data
▶ Geosteering inverse problem
▶ Challenges

• Proposed method
▶ Bayesian view of our problem
▶ Proposed network

□ Train
□ Test

• Testing results

It seems that our core idea has been produced by [3].

Mar. 1 University of Houston - 12 - Yuchen Jin
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