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In this article, we would discuss the trick about training and testing phases
for dictionary learning (sparse coding). The original work could be referred in
[1]. As extra reading materials, we suggest reading [2] for understanding how
to apply Lagrangian method and [3] to refer some conclusions about how to
calculate gradients for matrices.

1 Solve the Lasso problem
Consider the testing phase of sparse coding which could be formulated as

min
{αi}N

i=1

N∑
i=1

(
∥xi −Dαi∥22 + λ∥αi∥1

)
. (1-1)

Then we could find the stationary point according to the first-order gradient,

d

dαk

(
N∑
i=1

(
∥xi −Dαi∥22 + λ∥αi∥1

))

=
d

dαk

(
∥xk −Dαk∥22 + λ∥αk∥1

)
=

d

dαk

(
(xk −Dαk)

T (xk −Dαk)
)
+ λsign(αk)

=
d

dαk

(
−2αT

kD
Txk +αT

kD
TDαk

)
+ λsign(αk)

= −2DTxk + 2DTDαk + λsign(αk) = 0.

(2)

(2) indicates the analytical solution for Lasso problem implicitly. To find
the best αk, we still need to apply some tricks. Denote that θk = sign(αk), we
could rewrite (2) as

αk = (DTD)−1(DTxk − λ

2
θk). (3)
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Since θk = sign(αk), we could apply sign(·) to both sides of (3), then we get

sign

(
1

λ

dLasso

dαk

)
= sign

(
(DTD)−1(DTxk − λ

2
θk)

)
− θk

= sign

(
DTxk − λ

2
θk

)
− θk

= sign (yk − λθk)− θk = 0.

(4)

(4) indicates a fast solution for (2). It proves that considering that the ith

element of yk, i.e. yki, we would find that when yki > λ, αki > 0, and when
yki < −λ, αki < 0. Furthermore, when yki ∈ [−λ, λ], αki = 0. After confirming
θk, it will be easy to get αk from (3) directly.

2 Learn the dictionary
If we rewrite the coding as a matrix as below,

A =
[
α1 α2 · · · αN

]
, (5)

then we could rewrite the dictionary learning problem by Frobenius norm,

min
D

∥X−DA∥2F , (6-1)

s.t. ∥D(:, k)∥2 ⩽ 1, ∀k ∈ {1, 2, . . . ,K}. (6-2)

Training dictionary requires us to train D and A alternatively. The method
for training A has been discussed before, hence we would discuss how to train
D in the following part. Subsequently, we only note that the trainable variable
is D (6-1), which means (1-1) and (6-1) require to be solved alternatively.

Solving the dictionary training need us to use Lagrangian multiplier method.
Denote the multiplier as µj , we could incorporate the constraints into the prob-
lem,

L(D, µ) = ∥X−DA∥2F +
K∑
j=1

µj

D∑
i=1

(D2
ij − 1). (7)

The first term of (7) could be expanded as

∥X−DA∥2F = Tr((X−DA)(X−DA)T )

= Tr(XXT ) + Tr(DAATDT )− 2Tr(DAXT ).
(8)

Denote a diagonal matrix Λ where each element is µj , Then the second term
could be rewritten as

K∑
j=1

µj

D∑
i=1

(D2
ij − 1) =

K∑
j=1

µj

D∑
i=1

(D2
ij)−

K∑
j=1

µj

= Tr(DΛDT −Λ).

(9)
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Hence we could rewrite (7) as

L(D, Λ) = Tr(XXT +DAATDT − 2DAXT +DΛDT −Λ). (10)

Apply the first-order partial gradient to D, we have

d

dD
(L(D, Λ)) =

d

dD

(
Tr(DAATDT − 2DAXT +DΛDT

)
= 2DAAT − 2XAT + 2DΛ = 0.

D = XAT (AAT +Λ)−1.

(11)

Substitute (11) into (10), we would have

L(Λ) = min
D

L(D, Λ)

= Tr(XXT +DAATDT − 2DAXT +DΛDT −Λ)

= Tr(XXT +D(AAT +Λ)DT − 2DAXT −Λ)

= Tr(XXT +XAT (AAT +Λ)−1(AAT +Λ)(AAT +Λ)−1AXT

− 2XAT (AAT +Λ)−1AXT −Λ)

= Tr(XXT −XAT (AAT +Λ)−1AXT −Λ).

(12)

Note that D has been represented by Λ, we would know that minimizing
L(·) could be applied on Λ solely. Hence we have

∂min
D

L

∂µi
= Tr

(
∂XXT

∂µi
− ∂XAT (AAT +Λ)−1AXT

∂µi
− ∂Λ

∂µi

)
= −Tr

(
∂XAT (AAT +Λ)−1AXT

∂µi

)
− 1.

(13)

In [3], there has been a conclusion that

Tr

(
∂PT (X+A)−1P

∂xi

)
= −∥PT (X+A)−1ei∥

2

2. (14)

Apply (14) to (13), we have

∂min
D

L

∂µi
= ∥XAT (AAT +Λ)−1ei∥

2

2 − 1 = 0. (15)

(15) is in the quadratic form, hence it is convex and we could find the
analytical solution for Λ. Substitute Λ into (11), we would solve D.

An interesting thing is that if anyone substitute (11) into (15), then it will
be

∥Dei∥22 = ∥D(:, i)∥2 = 1, (16)
which shows that the solution revealed in (11) and (15) fulfills the constraints

in (6-2) strictly.
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